File size: 2,588 Bytes
51cfed5
59e7020
 
51cfed5
59e7020
 
 
 
 
 
 
 
51cfed5
 
59e7020
 
 
 
 
51cfed5
 
59e7020
51cfed5
59e7020
 
 
 
 
51cfed5
 
59e7020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cfed5
59e7020
 
 
 
51cfed5
59e7020
 
 
 
 
 
 
 
51cfed5
 
 
 
 
59e7020
 
51cfed5
 
59e7020
51cfed5
 
 
 
 
59e7020
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer locally
model_name = "GoofyLM/gonzalez-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,  # Use float16 for efficiency
    device_map="auto"  # Automatically distribute across available GPUs/devices
)

def respond(
    message, 
    history: list[tuple[str, str]], 
    system_message, 
    max_tokens, 
    temperature, 
    top_p,
):
    # Format messages for the model
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    # Convert messages to model input format
    chat_template = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    
    # Tokenize the input
    inputs = tokenizer(chat_template, return_tensors="pt").to(model.device)
    
    # Generate response with streaming
    input_length = inputs.input_ids.shape[1]
    generated_tokens = []
    
    # Set up generation parameters
    gen_kwargs = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "do_sample": temperature > 0,
        "pad_token_id": tokenizer.eos_token_id,
    }
    
    # Stream the generation
    response = ""
    for output in model.generate(
        **inputs,
        **gen_kwargs,
        streamer=transformers.TextStreamer(tokenizer, skip_prompt=True),
    ):
        # Skip input tokens
        if len(output) <= input_length:
            continue
        
        # Get new tokens
        new_tokens = output[input_length:]
        decoded = tokenizer.decode(new_tokens, skip_special_tokens=True)
        response = decoded
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a Gonzalez-v1.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()