Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Create stablediffusion.py
Browse files- stablediffusion.py +196 -0
    	
        stablediffusion.py
    ADDED
    
    | @@ -0,0 +1,196 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from base64 import b64encode
         | 
| 2 | 
            +
            from utils import *
         | 
| 3 | 
            +
            import numpy
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
         | 
| 6 | 
            +
            from huggingface_hub import notebook_login
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # For video display:
         | 
| 9 | 
            +
            from IPython.display import HTML
         | 
| 10 | 
            +
            from matplotlib import pyplot as plt
         | 
| 11 | 
            +
            from pathlib import Path
         | 
| 12 | 
            +
            from PIL import Image
         | 
| 13 | 
            +
            from torch import autocast
         | 
| 14 | 
            +
            from torchvision import transforms as tfms
         | 
| 15 | 
            +
            from tqdm.auto import tqdm
         | 
| 16 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer, logging
         | 
| 17 | 
            +
            import os
         | 
| 18 | 
            +
            import shutil
         | 
| 19 | 
            +
            from device import torch_device,vae,text_encoder,unet,tokenizer,scheduler,token_emb_layer,pos_emb_layer,position_embeddings
         | 
| 20 | 
            +
            torch.manual_seed(1)
         | 
| 21 | 
            +
            if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # Supress some unnecessary warnings when loading the CLIPTextModel
         | 
| 24 | 
            +
            logging.set_verbosity_error()
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            # Set device
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            def generate_distorted_image(pil_image,vae):
         | 
| 30 | 
            +
                # View a noised version
         | 
| 31 | 
            +
                encoded = pil_to_latent(pil_image)
         | 
| 32 | 
            +
                noise = torch.randn_like(encoded) # Random noise
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                sampling_step = 5 # Equivalent to step 10 out of 15 in the schedule above
         | 
| 35 | 
            +
                # encoded_and_noised = scheduler.add_noise(encoded, noise, timestep) # Diffusers 0.3 and below
         | 
| 36 | 
            +
                encoded_and_noised = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[sampling_step]]))
         | 
| 37 | 
            +
                return latents_to_pil(encoded_and_noised)[0] # Display
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            def set_timesteps(scheduler, num_inference_steps):
         | 
| 40 | 
            +
                scheduler.set_timesteps(num_inference_steps)
         | 
| 41 | 
            +
                scheduler.timesteps = scheduler.timesteps.to(torch.float32)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            # Some settings
         | 
| 45 | 
            +
            def generate_image(prompt,concept_embed,num_inference_steps=50,color_postprocessing=False,noised_image=False,loss_scale=10,seed=42):
         | 
| 46 | 
            +
                    height = 512                        # default height of Stable Diffusion
         | 
| 47 | 
            +
                    width = 512                         # default width of Stable Diffusion
         | 
| 48 | 
            +
                    num_inference_steps = num_inference_steps          # Number of denoising steps
         | 
| 49 | 
            +
                    guidance_scale = 7.5                # Scale for classifier-free guidance
         | 
| 50 | 
            +
                    generator = torch.manual_seed(seed)   # Seed generator to create the inital latent noise
         | 
| 51 | 
            +
                    batch_size = 1
         | 
| 52 | 
            +
                      # Define the directory name
         | 
| 53 | 
            +
                    directory_name = "steps"
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                    # Check if the directory exists, and if so, delete it
         | 
| 56 | 
            +
                    if os.path.exists(directory_name):
         | 
| 57 | 
            +
                        shutil.rmtree(directory_name)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    #Create the directory
         | 
| 60 | 
            +
                    os.makedirs(directory_name)
         | 
| 61 | 
            +
                    # Prep text
         | 
| 62 | 
            +
                    #text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
         | 
| 63 | 
            +
            #         with torch.no_grad():
         | 
| 64 | 
            +
            #             text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
         | 
| 67 | 
            +
                    input_ids = text_input.input_ids.to(torch_device)
         | 
| 68 | 
            +
                    custom_style_token=tokenizer.encode("cs",add_special_token=False)[0]
         | 
| 69 | 
            +
                    # Get token embeddings
         | 
| 70 | 
            +
                    token_embeddings = token_emb_layer(input_ids)
         | 
| 71 | 
            +
                    embed_key=list(concept_embed.keys())[0]
         | 
| 72 | 
            +
                    # The new embedding. In this case just the input embedding of token 2368...
         | 
| 73 | 
            +
                    replacement_token_embedding = concept_embed[embed_key]
         | 
| 74 | 
            +
                    token_embeddings[0,torch.where(input_ids[0]==custom_style_token)]=replacement_token_embedding.to(torch_device)
         | 
| 75 | 
            +
                    # Combine with pos embs
         | 
| 76 | 
            +
                    input_embeddings = token_embeddings + position_embeddings
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    #  Feed through to get final output embs
         | 
| 79 | 
            +
                    modified_output_embeddings = get_output_embeds(input_embeddings)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    max_length = text_input.input_ids.shape[-1]
         | 
| 82 | 
            +
                    uncond_input = tokenizer(
         | 
| 83 | 
            +
                      [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
         | 
| 84 | 
            +
                    )
         | 
| 85 | 
            +
                    with torch.no_grad():
         | 
| 86 | 
            +
                        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
         | 
| 87 | 
            +
                    text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    set_timesteps(scheduler,num_inference_steps)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    # Prep latents
         | 
| 94 | 
            +
                    latents = torch.randn(
         | 
| 95 | 
            +
                    (batch_size, unet.in_channels, height // 8, width // 8),
         | 
| 96 | 
            +
                    generator=generator,
         | 
| 97 | 
            +
                    )
         | 
| 98 | 
            +
                    latents = latents.to(torch_device)
         | 
| 99 | 
            +
                    latents = latents * scheduler.init_noise_sigma # Scaling (previous versions did latents = latents * self.scheduler.sigmas[0]
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                  # Loop
         | 
| 102 | 
            +
                    with autocast("cuda"):  # will fallback to CPU if no CUDA; no autocast for MPS
         | 
| 103 | 
            +
                        for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
         | 
| 104 | 
            +
                          # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
         | 
| 105 | 
            +
                                latent_model_input = torch.cat([latents] * 2)
         | 
| 106 | 
            +
                                sigma = scheduler.sigmas[i]
         | 
| 107 | 
            +
                                # Scale the latents (preconditioning):
         | 
| 108 | 
            +
                                # latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) # Diffusers 0.3 and below
         | 
| 109 | 
            +
                                latent_model_input = scheduler.scale_model_input(latent_model_input, t)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                                # predict the noise residual
         | 
| 112 | 
            +
                                with torch.no_grad():
         | 
| 113 | 
            +
                                    noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                                # perform guidance
         | 
| 116 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 117 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                          # compute the previous noisy sample x_t -> x_t-1
         | 
| 120 | 
            +
                          # latents = scheduler.step(noise_pred, i, latents)["prev_sample"] # Diffusers 0.3 and below
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                          #latents = torch.tensor(initial_latents, requires_grad=True)
         | 
| 123 | 
            +
                          ### ADDITIONAL GUIDANCE ###
         | 
| 124 | 
            +
                          # Requires grad on the latents
         | 
| 125 | 
            +
                                if color_postprocessing:
         | 
| 126 | 
            +
                                    latents = latents.detach().requires_grad_()
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                                    # Get the predicted x0:
         | 
| 129 | 
            +
                                    latents_x0 = latents - sigma * noise_pred
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                                    # Decode to image space
         | 
| 132 | 
            +
                                    denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
         | 
| 133 | 
            +
                                    #denoised_images = vae.decode((1 / 0.18215) * latents_x0) / 2 + 0.5 # (0, 1)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                                    # Calculate loss
         | 
| 136 | 
            +
                                    loss = orange_loss(denoised_images) * loss_scale
         | 
| 137 | 
            +
                                    #loss = color_loss(denoised_images,postporcessing_color) * color_loss_scale
         | 
| 138 | 
            +
                                    if i%10==0:
         | 
| 139 | 
            +
                                        print(i, 'loss:', loss.item())
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                                    # Get gradient
         | 
| 142 | 
            +
                                    cond_grad = -torch.autograd.grad(loss, latents)[0]
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                                    # Modify the latents based on this gradient
         | 
| 145 | 
            +
                                    latents = latents.detach() + cond_grad * sigma**2
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
                                    ### And saving as before ###
         | 
| 149 | 
            +
                                    # Get the predicted x0:
         | 
| 150 | 
            +
                                    latents_x0 = latents - sigma * noise_pred
         | 
| 151 | 
            +
                                    im_t0 = latents_to_pil(latents_x0)[0]
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                                    # And the previous noisy sample x_t -> x_t-1
         | 
| 154 | 
            +
                                    latents = scheduler.step(noise_pred, t, latents)["prev_sample"]
         | 
| 155 | 
            +
                                    im_next = latents_to_pil(latents)[0]
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                                    # Combine the two images and save for later viewing
         | 
| 158 | 
            +
                                    im = Image.new('RGB', (1024, 512))
         | 
| 159 | 
            +
                                    im.paste(im_next, (0, 0))
         | 
| 160 | 
            +
                                    im.paste(im_t0, (512, 0))
         | 
| 161 | 
            +
                                    im.save(f'steps/{i:04}.jpeg')
         | 
| 162 | 
            +
                                
         | 
| 163 | 
            +
                                else:
         | 
| 164 | 
            +
                                     latents = scheduler.step(noise_pred, t, latents).prev_sample
         | 
| 165 | 
            +
             | 
| 166 | 
            +
             | 
| 167 | 
            +
                    if noised_image:
         | 
| 168 | 
            +
                        output = generate_distorted_image(latents_to_pil(latents)[0],vae)
         | 
| 169 | 
            +
                    else:
         | 
| 170 | 
            +
                        output = latents_to_pil(latents)[0]
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    return output
         | 
| 173 | 
            +
            def get_output_embeds(input_embeddings):
         | 
| 174 | 
            +
                # CLIP's text model uses causal mask, so we prepare it here:
         | 
| 175 | 
            +
                bsz, seq_len = input_embeddings.shape[:2]
         | 
| 176 | 
            +
                causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                # Getting the output embeddings involves calling the model with passing output_hidden_states=True
         | 
| 179 | 
            +
                # so that it doesn't just return the pooled final predictions:
         | 
| 180 | 
            +
                encoder_outputs = text_encoder.text_model.encoder(
         | 
| 181 | 
            +
                    inputs_embeds=input_embeddings,
         | 
| 182 | 
            +
                    attention_mask=None, # We aren't using an attention mask so that can be None
         | 
| 183 | 
            +
                    causal_attention_mask=causal_attention_mask.to(torch_device),
         | 
| 184 | 
            +
                    output_attentions=None,
         | 
| 185 | 
            +
                    output_hidden_states=True, # We want the output embs not the final output
         | 
| 186 | 
            +
                    return_dict=None,
         | 
| 187 | 
            +
                )
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                # We're interested in the output hidden state only
         | 
| 190 | 
            +
                output = encoder_outputs[0]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                # There is a final layer norm we need to pass these through
         | 
| 193 | 
            +
                output = text_encoder.text_model.final_layer_norm(output)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                # And now they're ready!
         | 
| 196 | 
            +
                return output
         | 
