Spaces:
Running
on
A100
Running
on
A100
File size: 10,289 Bytes
6a4178d 0557d7f ace6ed9 21b17c3 ace6ed9 30343a2 0557d7f 30343a2 0557d7f 9f13dde 0557d7f 30343a2 ace6ed9 6a4178d ace6ed9 6a4178d ace6ed9 30343a2 21b17c3 30343a2 21b17c3 6a4178d 21b17c3 0557d7f 30343a2 9f13dde 30343a2 21b17c3 30343a2 0557d7f 6a4178d 30343a2 21b17c3 9f13dde 21b17c3 6a4178d 21b17c3 30343a2 21b17c3 30343a2 21b17c3 30343a2 21b17c3 30343a2 9f13dde 30343a2 6a4178d 30343a2 6a4178d 30343a2 ace6ed9 30343a2 9f13dde 30343a2 6a4178d 30343a2 0557d7f 6a4178d 30343a2 ace6ed9 30343a2 9f13dde 30343a2 0557d7f 30343a2 ace6ed9 0557d7f ace6ed9 0557d7f ace6ed9 30343a2 6a4178d 30343a2 ace6ed9 30343a2 21b17c3 30343a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os, json, re, traceback
from typing import Any, Dict, Tuple
import gradio as gr
from PIL import Image
import torch
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, AutoConfig
# --------------------------
# Env / params
# --------------------------
MODEL_ID = os.environ.get("MODEL_ID", "inference-net/ClipTagger-12b")
HF_TOKEN = os.environ.get("HF_TOKEN") # set in Space β Settings β Variables & secrets
TEMP = 0.1
MAX_NEW_TOKENS = 2000
DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# --------------------------
# Prompts (yours)
# --------------------------
SYSTEM_PROMPT = (
"You are an image annotation API trained to analyze YouTube video keyframes. "
"You will be given instructions on the output format, what to caption, and how to perform your job. "
"Follow those instructions. For descriptions and summaries, provide them directly and do not lead them with "
"'This image shows' or 'This keyframe displays...', just get right into the details."
)
USER_PROMPT = """You are an image annotation API trained to analyze YouTube video keyframes. You must respond with a valid JSON object matching the exact structure below.
Your job is to extract detailed **factual elements directly visible** in the image. Do not speculate or interpret artistic intent, camera focus, or composition. Do not include phrases like "this appears to be", "this looks like", or anything about the image itself. Describe what **is physically present in the frame**, and nothing more.
Return JSON in this structure:
{
"description": "A detailed, factual account of what is visibly happening (4 sentences max). Only mention concrete elements or actions that are clearly shown. Do not include anything about how the image is styled, shot, or composed. Do not lead the description with something like 'This image shows' or 'this keyframe is...', just get right into the details.",
"objects": ["object1 with relevant visual details", "object2 with relevant visual details", ...],
"actions": ["action1 with participants and context", "action2 with participants and context", ...],
"environment": "Detailed factual description of the setting and atmosphere based on visible cues (e.g., interior of a classroom with fluorescent lighting, or outdoor forest path with snow-covered trees).",
"content_type": "The type of content it is, e.g. 'real-world footage', 'video game', 'animation', 'cartoon', 'CGI', 'VTuber', etc.",
"specific_style": "Specific genre, aesthetic, or platform style (e.g., anime, 3D animation, mobile gameplay, vlog, tutorial, news broadcast, etc.)",
"production_quality": "Visible production level: e.g., 'professional studio', 'amateur handheld', 'webcam recording', 'TV broadcast', etc.",
"summary": "One clear, comprehensive sentence summarizing the visual content of the frame. Like the description, get right to the point.",
"logos": ["logo1 with visual description", "logo2 with visual description", ...]
}
Rules:
- Be specific and literal. Focus on what is explicitly visible.
- Do NOT include interpretations of emotion, mood, or narrative unless it's visually explicit.
- No artistic or cinematic analysis.
- Always include the language of any text in the image if present as an object, e.g. "English text", "Japanese text", "Russian text", etc.
- Maximum 10 objects and 5 actions.
- Return an empty array for 'logos' if none are present.
- Always output strictly valid JSON with proper escaping.
- Output **only the JSON**, no extra text or explanation.
"""
# --------------------------
# Utilities
# --------------------------
def _json_extract(text: str):
"""Strict JSON parse with top-level {...} fallback."""
try:
return json.loads(text)
except Exception:
m = re.search(r"\{(?:[^{}]|(?R))*\}", text, flags=re.DOTALL)
if m:
try:
return json.loads(m.group(0))
except Exception:
pass
return None
def _build_messages(image: Image.Image):
return [
{"role": "system", "content": [{"type": "text", "text": SYSTEM_PROMPT}]},
{"role": "user", "content": [{"type": "image", "image": image},
{"type": "text", "text": USER_PROMPT}]}
]
def _downscale_if_huge(pil: Image.Image, max_side: int = 1792) -> Image.Image:
"""Cap longest side to keep memory predictable; A100 is roomy but this avoids extreme uploads."""
if pil is None:
return pil
w, h = pil.size
m = max(w, h)
if m <= max_side:
return pil.convert("RGB")
scale = max_side / m
new_w, new_h = int(w * scale), int(h * scale)
return pil.convert("RGB").resize((new_w, new_h), Image.BICUBIC)
# --------------------------
# Load model (dedicated GPU)
# --------------------------
processor = tokenizer = model = None
LOAD_ERROR = None
try:
cfg = AutoConfig.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
if "clip" in cfg.__class__.__name__.lower():
raise RuntimeError(
f"MODEL_ID '{MODEL_ID}' resolves to a CLIP/encoder config; need a causal VLM checkpoint."
)
# Try quantized path (compressed-tensors) per your config
try:
processor = AutoProcessor.from_pretrained(
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
)
except TypeError:
processor = AutoProcessor.from_pretrained(
MODEL_ID, token=HF_TOKEN, trust_remote_code=True
)
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
device_map="auto",
torch_dtype=DTYPE,
trust_remote_code=True,
)
except Exception as e:
# Fallback: disable quantization if the backend isn't available
if "compressed_tensors" in str(e):
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
device_map="auto",
torch_dtype=DTYPE,
trust_remote_code=True,
quantization_config=None,
)
else:
raise
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
MODEL_ID, token=HF_TOKEN, trust_remote_code=True, use_fast=True
)
except Exception as e:
LOAD_ERROR = f"{e}\n\n{traceback.format_exc()}"
# --------------------------
# Inference
# --------------------------
def run(image: Image.Image) -> Tuple[str, Dict[str, Any] | None, bool]:
if image is None:
return "Please upload an image.", None, False
if model is None or processor is None:
msg = (
"β Model failed to load.\n\n"
f"{LOAD_ERROR or 'Unknown error.'}\n"
"Check MODEL_ID/HF_TOKEN and that the repo includes model + processor files."
)
return msg, None, False
image = _downscale_if_huge(image)
# Build chat prompt
if hasattr(processor, "apply_chat_template"):
prompt = processor.apply_chat_template(_build_messages(image), add_generation_prompt=True, tokenize=False)
else:
# Very rare fallback path
msgs = _build_messages(image)
prompt = ""
for m in msgs:
role = m["role"].upper()
for chunk in m["content"]:
if chunk["type"] == "text":
prompt += f"{role}: {chunk['text']}\n"
elif chunk["type"] == "image":
prompt += f"{role}: [IMAGE]\n"
# Tokenize with vision
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
# Gen args
gen_kwargs = dict(
temperature=TEMP,
max_new_tokens=MAX_NEW_TOKENS,
)
eos = getattr(model.config, "eos_token_id", None)
if eos is not None:
gen_kwargs["eos_token_id"] = eos
# Try to enforce JSON; if unsupported, we'll retry without
tried = []
for tag, extra in [
("json_object", {"response_format": {"type": "json_object"}}),
("no_response_format", {}),
("short_deterministic", {"temperature": 0.0, "max_new_tokens": min(512, MAX_NEW_TOKENS)}),
]:
try:
with torch.inference_mode():
out = model.generate(**inputs, **{**gen_kwargs, **extra})
text = (processor.decode(out[0], skip_special_tokens=True)
if hasattr(processor, "decode")
else AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN, use_fast=True).decode(out[0], skip_special_tokens=True))
if USER_PROMPT in text:
text = text.split(USER_PROMPT)[-1].strip()
parsed = _json_extract(text)
if isinstance(parsed, dict):
return json.dumps(parsed, indent=2), parsed, True
tried.append((tag, "parsed-failed"))
except Exception as e:
tried.append((tag, f"err={e}"))
# If all strategies failed, return debug info
return "Generation failed.\nTried: " + "\n".join([f"{t[0]} -> {t[1]}" for t in tried]), None, False
# --------------------------
# UI
# --------------------------
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False, title="Keyframe Annotator (Gemma-3 VLM)") as demo:
gr.Markdown("# Keyframe Annotator (Gemma-3-12B FT Β· A100)\nUpload an image to get **strict JSON** annotations.")
if LOAD_ERROR:
with gr.Accordion("Startup Error Details", open=False):
gr.Markdown(f"```\n{LOAD_ERROR}\n```")
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(type="pil", label="Upload Image", image_mode="RGB")
btn = gr.Button("Annotate", variant="primary")
with gr.Column(scale=1):
out_text = gr.Code(label="Output (JSON or error)")
out_json = gr.JSON(label="Parsed JSON")
ok = gr.Checkbox(label="Valid JSON", value=False, interactive=False)
def on_click(img):
return run(img)
btn.click(on_click, inputs=[image], outputs=[out_text, out_json, ok])
# Conservative concurrency to avoid OOM spikes; A100-80GB can increase this.
demo.queue(max_size=32, max_concurrency=1).launch()
|