File size: 10,322 Bytes
3301b3c
 
 
 
 
 
 
 
 
 
33f4e34
3301b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f4e34
 
 
 
 
 
 
 
 
 
 
 
 
3301b3c
 
 
 
33f4e34
 
 
 
 
 
3301b3c
 
 
 
 
 
 
33f4e34
 
 
 
 
 
 
3301b3c
 
 
 
 
 
 
 
33f4e34
 
 
 
 
 
 
 
 
 
3301b3c
 
 
33f4e34
3301b3c
 
 
 
 
 
 
 
 
 
33f4e34
3301b3c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Generic Pre-Processing Pipeline (GPP) for Document Intelligence

This module handles:
 1. Parsing PDFs via MinerU Python API (OCR/text modes)
 2. Extracting markdown, images, and content_list JSON
 3. Chunking multimodal content (text, tables, images), ensuring tables/images are in single chunks
 4. Parsing markdown tables into JSON 2D structures for dense tables
 5. Narration of tables/images via LLM
 6. Semantic enhancements (deduplication, coreference, metadata summarization)
 7. Embedding computation for in-memory use

Each step is modular to support swapping components (e.g. different parsers or stores).
"""
import os
import json
import logging
from typing import List, Dict, Any, Optional
import re

from mineru.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
from mineru.data.dataset import PymuDocDataset
from mineru.model.doc_analyze_by_custom_model import doc_analyze
from mineru.config.enums import SupportedPdfParseMethod

from langchain.text_splitter import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
import numpy as np

# LLM client abstraction
from src.utils import LLMClient

# Configure logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


def parse_markdown_table(md: str) -> Optional[Dict[str, Any]]:
    """
    Parses a markdown table into a JSON-like dict:
    { headers: [...], rows: [[...], ...] }
    Handles multi-level headers by nesting lists if needed.
    """
    lines = [l for l in md.strip().splitlines() if l.strip().startswith('|')]
    if len(lines) < 2:
        return None
    header_line = lines[0]
    sep_line = lines[1]
    # Validate separator line
    if not re.match(r"^\|?\s*:?-+:?\s*(\|\s*:?-+:?\s*)+\|?", sep_line):
        return None
    def split_row(line):
        parts = [cell.strip() for cell in line.strip().strip('|').split('|')]
        return parts
    headers = split_row(header_line)
    rows = [split_row(r) for r in lines[2:]]
    return {'headers': headers, 'rows': rows}

class GPPConfig:
    """
    Configuration for GPP pipeline.
    """
    CHUNK_TOKEN_SIZE = 256
    DEDUP_SIM_THRESHOLD = 0.9
    EXPANSION_SIM_THRESHOLD = 0.85
    COREF_CONTEXT_SIZE = 3

    # Embedding models
    TEXT_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
    META_EMBED_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'

class GPP:
    def __init__(self, config: GPPConfig):
        self.config = config
        # Embedding models
        self.text_embedder = SentenceTransformer(config.TEXT_EMBED_MODEL)
        self.meta_embedder = SentenceTransformer(config.META_EMBED_MODEL)
        self.bm25 = None

    def parse_pdf(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
        """
        Uses MinerU API to parse PDF in OCR/text mode,
        dumps markdown, images, layout PDF, content_list JSON.
        Returns parsed data plus file paths for UI traceability.
        """
        name = os.path.splitext(os.path.basename(pdf_path))[0]
        img_dir = os.path.join(output_dir, 'images')
        os.makedirs(img_dir, exist_ok=True)
        os.makedirs(output_dir, exist_ok=True)

        writer_imgs = FileBasedDataWriter(img_dir)
        writer_md = FileBasedDataWriter(output_dir)
        reader = FileBasedDataReader("")
        pdf_bytes = reader.read(pdf_path)
        ds = PymuDocDataset(pdf_bytes)
        if ds.classify() == SupportedPdfParseMethod.OCR:
            infer = ds.apply(doc_analyze, ocr=True)
            pipe = infer.pipe_ocr_mode(writer_imgs)
        else:
            infer = ds.apply(doc_analyze, ocr=False)
            pipe = infer.pipe_txt_mode(writer_imgs)
        # Visual layout
        pipe.draw_layout(os.path.join(output_dir, f"{name}_layout.pdf"))
        # Dump markdown & JSON
        pipe.dump_md(writer_md, f"{name}.md", os.path.basename(img_dir))
        pipe.dump_content_list(writer_md, f"{name}_content_list.json", os.path.basename(img_dir))

        content_list_path = os.path.join(output_dir, f"{name}_content_list.json")
        with open(content_list_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        # UI traceability paths
        data.update({
            'md_path': os.path.join(output_dir, f"{name}.md"),
            'images_dir': img_dir,
            'layout_pdf': os.path.join(output_dir, f"{name}_layout.pdf")
        })
        return data

    def chunk_blocks(self, blocks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Creates chunks of ~CHUNK_TOKEN_SIZE tokens, but ensures any table/image block
        becomes its own chunk (unsplittable), flushing current text chunk as needed.
        """
        chunks, current, token_count = [], {'text': '', 'type': None, 'blocks': []}, 0
        for blk in blocks:
            btype = blk.get('type')
            text = blk.get('text', '')
            if btype in ('table', 'img_path'):
                # Flush existing text chunk
                if current['blocks']:
                    chunks.append(current)
                    current = {'text': '', 'type': None, 'blocks': []}
                    token_count = 0
                # Create isolated chunk for the table/image
                tbl_chunk = {'text': text, 'type': btype, 'blocks': [blk]}
                # Parse markdown table into JSON structure if applicable
                if btype == 'table':
                    tbl_struct = parse_markdown_table(text)
                    tbl_chunk['table_structure'] = tbl_struct
                chunks.append(tbl_chunk)
                continue
            # Standard text accumulation
            count = len(text.split())
            if token_count + count > self.config.CHUNK_TOKEN_SIZE and current['blocks']:
                chunks.append(current)
                current = {'text': '', 'type': None, 'blocks': []}
                token_count = 0
            current['text'] += text + '\n'
            current['type'] = current['type'] or btype
            current['blocks'].append(blk)
            token_count += count
        # Flush remaining
        if current['blocks']:
            chunks.append(current)
        logger.info(f"Chunked into {len(chunks)} pieces (with tables/images isolated).")
        return chunks

    def narrate_multimodal(self, chunks: List[Dict[str, Any]]) -> None:
        """
        For table/image chunks, generate LLM narration. Preserve table_structure in metadata.
        """
        for c in chunks:
            if c['type'] in ('table', 'img_path'):
                prompt = f"Describe this {c['type']} concisely:\n{c['text']}"
                c['narration'] = LLMClient.generate(prompt)
            else:
                c['narration'] = c['text']

    def deduplicate(self, chunks: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        try:
            embs = self.text_embedder.encode([c.get('narration', '') for c in chunks], convert_to_tensor=True)
            keep = []
            for i, emb in enumerate(embs):
                if not any((emb @ embs[j]).item() / (np.linalg.norm(emb) * np.linalg.norm(embs[j]) + 1e-8)
                           > self.config.DEDUP_SIM_THRESHOLD for j in keep):
                    keep.append(i)
            deduped = [chunks[i] for i in keep]
            logger.info(f"Deduplicated: {len(chunks)}{len(deduped)}")
            return deduped
        except Exception as e:
            logger.error(f"Deduplication failed: {e}")
            return chunks

    def coref_resolution(self, chunks: List[Dict[str, Any]]) -> None:
        for idx, c in enumerate(chunks):
            start = max(0, idx-self.config.COREF_CONTEXT_SIZE)
            ctx = "\n".join(chunks[i].get('narration', '') for i in range(start, idx))
            prompt = f"Context:\n{ctx}\nRewrite pronouns in:\n{c.get('narration', '')}"
            try:
                c['narration'] = LLMClient.generate(prompt)
            except Exception as e:
                logger.error(f"Coref resolution failed for chunk {idx}: {e}")

    def metadata_summarization(self, chunks: List[Dict[str, Any]]) -> None:
        sections: Dict[str, List[Dict[str, Any]]] = {}
        for c in chunks:
            sec = c.get('section', 'default')
            sections.setdefault(sec, []).append(c)
        for sec, items in sections.items():
            blob = "\n".join(i.get('narration', '') for i in items)
            try:
                summ = LLMClient.generate(f"Summarize this section:\n{blob}")
                for i in items:
                    i.setdefault('metadata', {})['section_summary'] = summ
            except Exception as e:
                logger.error(f"Metadata summarization failed for section {sec}: {e}")

    def build_bm25(self, chunks: List[Dict[str, Any]]) -> None:
        """
        Build BM25 index on token lists for sparse retrieval.
        """
        tokenized = [c['narration'].split() for c in chunks]
        self.bm25 = BM25Okapi(tokenized)

    # def compute_and_store(self, chunks: List[Dict[str, Any]]) -> None:
    #     try:
    #         txts = [c.get('narration', '') for c in chunks]
    #         metas = [c.get('metadata', {}).get('section_summary', '') for c in chunks]
    #         txt_embs = self.text_embedder.encode(txts)
    #         meta_embs = self.meta_embedder.encode(metas)
    #         # No Redis storage, just keep for in-memory use or return as needed
    #         logger.info("Computed embeddings for chunks.")
    #     except Exception as e:
    #         logger.error(f"Failed to compute embeddings: {e}")

    def run(self, pdf_path: str, output_dir: str) -> Dict[str, Any]:
        """
        Executes full GPP: parse -> chunk -> narrate -> enhance -> index.
        Returns parse output dict augmented with `chunks` for downstream processes.
        """
        parsed = self.parse_pdf(pdf_path, output_dir)
        blocks = parsed.get('blocks', [])
        chunks = self.chunk_blocks(blocks)
        self.narrate_multimodal(chunks)
        chunks = self.deduplicate(chunks)
        self.coref_resolution(chunks)
        self.metadata_summarization(chunks)
        self.build_bm25(chunks)
        # self.compute_and_store(chunks)
        parsed['chunks'] = chunks
        logger.info("GPP pipeline complete.")
        return parsed