File size: 15,579 Bytes
b560569
896ae69
b0464a9
87a87e7
1ba4c1b
2a3b22e
f7fc39b
2a3b22e
d252c6d
adb3bbe
538b42b
179ea1f
2a3b22e
 
 
 
 
 
9d99925
 
 
 
 
 
 
b0464a9
2a3b22e
 
 
b0464a9
2a3b22e
b0464a9
 
 
2a3b22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0464a9
 
 
2a3b22e
b0464a9
2a3b22e
 
3038c7b
2a3b22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038c7b
9f71fb3
2a3b22e
 
 
 
9d99925
9f71fb3
2a3b22e
 
9f71fb3
 
 
2a3b22e
9d99925
 
2a3b22e
9d99925
2a3b22e
 
 
9d99925
 
 
 
 
 
 
2a3b22e
9d99925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a9a646
9d99925
 
9f71fb3
9d99925
 
9f71fb3
2a3b22e
9d99925
 
 
2a3b22e
9d99925
9f71fb3
b0464a9
2a3b22e
b0464a9
2a3b22e
 
 
 
 
 
 
 
b0464a9
4cc3230
b0464a9
2a3b22e
b0464a9
2a3b22e
b0464a9
 
 
 
2a3b22e
b0464a9
2a3b22e
b0464a9
 
2a3b22e
adb3bbe
 
179ea1f
2a3b22e
 
adb3bbe
3038c7b
 
adb3bbe
b0464a9
2a3b22e
 
179ea1f
2a3b22e
 
adb3bbe
 
2a3b22e
 
 
faf26ff
2a3b22e
 
 
 
 
 
 
 
faf26ff
2a3b22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faf26ff
 
 
 
 
7ab0240
adb3bbe
 
 
f7fc39b
179ea1f
a9b7f24
b0464a9
88d3a6e
b0464a9
2051c7a
b0464a9
f466d89
b0464a9
6d43d2f
b0464a9
179ea1f
adb3bbe
 
179ea1f
b0464a9
 
adb3bbe
06d22e5
538b42b
 
 
b0464a9
 
538b42b
 
179ea1f
b8b7e00
538b42b
2a3b22e
 
 
 
 
 
 
538b42b
adb3bbe
179ea1f
2a3b22e
 
 
 
b0464a9
2a3b22e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
import json
import os
import logging
import html
import pandas as pd

# Import functions from your custom modules
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
# Updated import to include fetch_posts_from_bubble
from Bubble_API_Calls import (
    fetch_linkedin_token_from_bubble,
    bulk_upload_to_bubble,
    fetch_posts_from_bubble  # Added new function
)
from Linkedin_Data_API_Calls import (
    fetch_linkedin_posts_core,
    fetch_comments,
    analyze_sentiment,
    compile_detailed_posts,
    prepare_data_for_bubble
)

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def check_token_status(token_state):
    """Checks the status of the LinkedIn token."""
    return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"

def process_and_store_bubble_token(url_user_token, org_urn, token_state):
    """
    Processes the user token from the URL, fetches LinkedIn token from Bubble,
    fetches initial posts from Bubble, and updates the token state and UI accordingly.
    """
    logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
    # Initialize or copy existing state, adding bubble_posts_df
    new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}
    new_state.update({"token": None, "org_urn": org_urn, "bubble_posts_df": None}) # Ensure bubble_posts_df is reset/initialized

    # Default button state: invisible and non-interactive
    button_update = gr.Button(
        value="πŸ”„ Fetch, Analyze & Store Posts to Bubble",
        variant="primary",
        visible=False,
        interactive=False
    )

    client_id = os.environ.get("Linkedin_client_id")
    if not client_id:
        logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
        new_state["client_id"] = "ENV VAR MISSING"
        # Even if client_id is missing, we might still be able to fetch from Bubble if org_urn is present
        # and then decide button visibility.
    else:
        new_state["client_id"] = client_id

    # Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access)
    if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
        logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
        parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
        if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
            new_state["token"] = parsed_linkedin_token
            logging.info("βœ… LinkedIn Token successfully fetched from Bubble.")
        else:
            logging.warning("❌ Failed to fetch a valid LinkedIn token from Bubble.")
    else:
        logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")

    # Fetch posts from Bubble using org_urn, regardless of LinkedIn token status for this specific fetch
    current_org_urn = new_state.get("org_urn")
    if current_org_urn:
        logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
        try:
            # Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None
            df_bubble_posts = fetch_posts_from_bubble(current_org_urn)
            new_state["bubble_posts_df"] = df_bubble_posts

            if df_bubble_posts is not None and not df_bubble_posts.empty:
                logging.info(f"βœ… Successfully fetched {len(df_bubble_posts)} posts from Bubble. Sync button will be enabled.")
                button_update = gr.Button(
                    value="πŸ”„ Fetch, Analyze & Store Posts to Bubble",
                    variant="primary",
                    visible=True,
                    interactive=True
                )
            else:
                logging.info("ℹ️ No posts found in Bubble for this organization or DataFrame is empty. Sync button will remain hidden.")
        except Exception as e:
            logging.error(f"❌ Error fetching posts from Bubble: {e}")
            # Keep button hidden on error
    else:
        logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
        
    token_status_message = check_token_status(new_state)
    logging.info(f"Token processing complete. Status: {token_status_message}. Button visible: {button_update.visible}")
    return token_status_message, new_state, button_update

def guarded_fetch_posts(token_state):
    """
    Fetches LinkedIn posts, analyzes them, and uploads to Bubble.
    This function is guarded by token availability.
    """
    logging.info("Starting guarded_fetch_posts process.")
    if not token_state or not token_state.get("token"):
        logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
        return "<p style='color:red; text-align:center;'>❌ Access denied. LinkedIn token not available.</p>"

    client_id = token_state.get("client_id")
    token_dict = token_state.get("token")
    org_urn = token_state.get('org_urn')

    if not org_urn:
        logging.error("Organization URN (org_urn) not found in token_state for guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ Configuration error: Organization URN missing.</p>"
    if not client_id or client_id == "ENV VAR MISSING":
        logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ Configuration error: LinkedIn Client ID missing.</p>"

    try:
        logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
        processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)

        if not processed_raw_posts:
            logging.info("No posts found to process after step 1.")
            return "<p style='color:orange; text-align:center;'>ℹ️ No new LinkedIn posts found to process.</p>"

        post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
        logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")

        logging.info("Step 2: Fetching comments.")
        all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)

        logging.info("Step 3: Analyzing sentiment.")
        sentiments_per_post = analyze_sentiment(all_comments_data)

        logging.info("Step 4: Compiling detailed posts.")
        detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)

        logging.info("Step 5: Preparing data for Bubble.")
        li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)

        logging.info("Step 6: Uploading data to Bubble.")
        bulk_upload_to_bubble(li_posts, "LI_posts")
        bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
        bulk_upload_to_bubble(li_post_comments, "LI_post_comments")

        logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
        return "<p style='color:green; text-align:center;'>βœ… Posts and comments uploaded to Bubble.</p>"

    except ValueError as ve:
        logging.error(f"ValueError during LinkedIn data processing: {ve}")
        return f"<p style='color:red; text-align:center;'>❌ Error: {html.escape(str(ve))}</p>"
    except Exception as e:
        logging.exception("An unexpected error occurred in guarded_fetch_posts.")
        return "<p style='color:red; text-align:center;'>❌ An unexpected error occurred. Please check logs.</p>"

def guarded_fetch_dashboard(token_state):
    """Fetches and renders the dashboard if token is available."""
    if not token_state or not token_state.get("token"):
        return "❌ Access denied. No token available for dashboard."
    # This function is not used in the current UI structure for the first tab's main content
    # but kept for potential future use or if it's called elsewhere.
    # The first tab's content is now primarily the button and its output.
    # If you intend to display a dashboard here *after* fetching, this would need integration.
    # For now, returning a placeholder or status.
    # return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
    return "<p style='text-align: center; color: #555;'>Dashboard content would load here if implemented.</p>"


def guarded_fetch_analytics(token_state):
    """Fetches and renders analytics if token is available."""
    if not token_state or not token_state.get("token"):
        return ("❌ Access denied. No token available for analytics.",
                None, None, None, None, None, None, None)
    return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))

def run_mentions_and_load(token_state):
    """Generates mentions dashboard if token is available."""
    if not token_state or not token_state.get("token"):
        return ("❌ Access denied. No token available for mentions.", None)
    return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))

# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Post Viewer & Analytics") as app:

    # Initialize state with the new field for Bubble DataFrame
    token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None})

    gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
    gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")

    url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Overall Token Status", interactive=False, value="Initializing...") # Initial status
    org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) # Renamed for clarity

    # Load user token and org URN from URL parameters
    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])

    with gr.Tabs():
        with gr.TabItem("1️⃣ Dashboard & Sync"):
            gr.Markdown("View your organization's recent posts and their engagement statistics. "
                        "Fetch new posts from LinkedIn, analyze, and store them in Bubble.")
            
            # Button is initially not visible and not interactive.
            # Its state will be updated by process_and_store_bubble_token
            sync_posts_to_bubble_btn = gr.Button(
                "πŸ”„ Fetch, Analyze & Store Posts to Bubble",
                variant="primary",
                visible=False, 
                interactive=False
            )
            
            dashboard_html_output = gr.HTML(
                "<p style='text-align: center; color: #555;'>System initializing... Status and actions will appear shortly. "
                "If data is found in Bubble, the 'Fetch, Analyze & Store' button will become active.</p>"
            )
            
            # Event: When URL token or org URN is loaded/changed, process it.
            # This will update token_state and the sync_posts_to_bubble_btn.
            # Using org_urn_display.change as the primary trigger after app.load completes.
            # If get_url_user_token is very fast, app.load might be better, but .change is robust.
            org_urn_display.change(
                fn=process_and_store_bubble_token,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_posts_to_bubble_btn] # Added button to outputs
            )
            # Also trigger if url_user_token_display changes, in case org_urn loads first
            # but token processing depends on url_user_token_display.
            # This creates a dependency: if one changes, the function runs with current values of both.
            url_user_token_display.change(
                fn=process_and_store_bubble_token,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_posts_to_bubble_btn]
            )

            # Click handler for the sync button
            sync_posts_to_bubble_btn.click(
                fn=guarded_fetch_posts, 
                inputs=[token_state], 
                outputs=[dashboard_html_output]
            )

        with gr.TabItem("2️⃣ Analytics"):
            gr.Markdown("View follower count and monthly gains for your organization.")
            fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
            follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")

            with gr.Row():
                follower_plot, growth_plot = gr.Plot(), gr.Plot()
            with gr.Row():
                eng_rate_plot = gr.Plot()
            with gr.Row():
                interaction_plot = gr.Plot()
            with gr.Row():
                eb_plot = gr.Plot()
            with gr.Row():
                mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()

            fetch_analytics_btn.click(
                fn=guarded_fetch_analytics,
                inputs=[token_state],
                outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
                         interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
            )

        with gr.TabItem("3️⃣ Mentions"):
            gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
            fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
            mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
            mentions_plot = gr.Plot()
            fetch_mentions_btn.click(
                fn=run_mentions_and_load,
                inputs=[token_state],
                outputs=[mentions_html, mentions_plot]
            )
            
    # Initial check of token status on app load (primarily for the status_box)
    # The button visibility is handled by process_and_store_bubble_token
    app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
    # Timer to periodically update the token status display (optional, but good for UX)
    gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)


if __name__ == "__main__":
    if not os.environ.get("Linkedin_client_id"):
        logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
    # Ensure the app launches.
    # For testing, you might want share=False or specific server_name/port.
    # share=True is useful for public sharing via Gradio link.
    app.launch(server_name="0.0.0.0", server_port=7860, share=True)
    # app.launch(share=True) # Simpler launch for testing if specific port/host not needed