Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,15 @@ from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
|
| 7 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
| 8 |
from mentions_dashboard import generate_mentions_dashboard
|
| 9 |
from gradio_utils import get_url_user_token
|
| 10 |
-
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
|
| 11 |
-
|
| 12 |
-
from Linkedin_Data_API_Calls import fetch_linkedin_posts, fetch_linkedin_comments, analyze_sentiment, prepare_data_for_bubble, bulk_upload_to_bubble
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def check_token_status(token_state):
|
| 16 |
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
|
@@ -42,22 +47,68 @@ def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
|
| 42 |
return check_token_status(new_state), new_state
|
| 43 |
|
| 44 |
def guarded_fetch_posts(token_state):
|
|
|
|
| 45 |
if not token_state or not token_state.get("token"):
|
|
|
|
| 46 |
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>"
|
| 47 |
|
| 48 |
client_id = token_state.get("client_id")
|
| 49 |
token_dict = token_state.get("token")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
sentiments = analyze_sentiment(comments_data)
|
| 54 |
-
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(posts, sentiments)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
|
| 61 |
|
| 62 |
|
| 63 |
def guarded_fetch_dashboard(token_state):
|
|
|
|
| 7 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
| 8 |
from mentions_dashboard import generate_mentions_dashboard
|
| 9 |
from gradio_utils import get_url_user_token
|
| 10 |
+
from Bubble_API_Calls import fetch_linkedin_token_from_bubble, bulk_upload_to_bubble
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from Linkedin_Data_API_Calls import (
|
| 13 |
+
fetch_linkedin_posts_core,
|
| 14 |
+
fetch_comments,
|
| 15 |
+
analyze_sentiment,
|
| 16 |
+
compile_detailed_posts,
|
| 17 |
+
prepare_data_for_bubble
|
| 18 |
+
)
|
| 19 |
|
| 20 |
def check_token_status(token_state):
|
| 21 |
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
|
|
|
|
| 47 |
return check_token_status(new_state), new_state
|
| 48 |
|
| 49 |
def guarded_fetch_posts(token_state):
|
| 50 |
+
logging.info("Starting guarded_fetch_posts process.")
|
| 51 |
if not token_state or not token_state.get("token"):
|
| 52 |
+
logging.error("Access denied. No token available.")
|
| 53 |
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>"
|
| 54 |
|
| 55 |
client_id = token_state.get("client_id")
|
| 56 |
token_dict = token_state.get("token")
|
| 57 |
+
org_urn = token_state.get('org_urn') # Ensure 'org_urn' is correctly fetched from token_state
|
| 58 |
+
|
| 59 |
+
if not org_urn:
|
| 60 |
+
logging.error("Organization URN (org_urn) not found in token_state.")
|
| 61 |
+
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
|
| 62 |
+
if not client_id:
|
| 63 |
+
logging.error("Client ID not found in token_state.")
|
| 64 |
+
return "<p style='color:red; text-align:center;'>β Configuration error: Client ID missing.</p>"
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
# Step 1: Fetch core post data (text, summary, category) and their basic stats
|
| 69 |
+
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
|
| 70 |
+
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
|
| 71 |
+
# org_name is returned as the third item, captured as _ if not used directly here
|
| 72 |
+
|
| 73 |
+
if not processed_raw_posts:
|
| 74 |
+
logging.info("No posts found to process after step 1.")
|
| 75 |
+
return "<p style='color:orange; text-align:center;'>βΉοΈ No posts found to process.</p>"
|
| 76 |
+
|
| 77 |
+
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
|
| 78 |
+
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
|
| 79 |
+
|
| 80 |
+
# Step 2: Fetch comments for these posts
|
| 81 |
+
logging.info("Step 2: Fetching comments.")
|
| 82 |
+
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
|
| 83 |
+
|
| 84 |
+
# Step 3: Analyze sentiment of the comments
|
| 85 |
+
logging.info("Step 3: Analyzing sentiment.")
|
| 86 |
+
sentiments_per_post = analyze_sentiment(all_comments_data)
|
| 87 |
+
|
| 88 |
+
# Step 4: Compile detailed post objects
|
| 89 |
+
logging.info("Step 4: Compiling detailed posts.")
|
| 90 |
+
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
|
| 91 |
+
|
| 92 |
+
# Step 5: Prepare data for Bubble
|
| 93 |
+
logging.info("Step 5: Preparing data for Bubble.")
|
| 94 |
+
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
|
| 95 |
+
|
| 96 |
+
# Step 6: Bulk upload to Bubble
|
| 97 |
+
logging.info("Step 6: Uploading data to Bubble.")
|
| 98 |
+
bulk_upload_to_bubble(li_posts, "LI_post")
|
| 99 |
+
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
| 100 |
+
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
|
| 101 |
|
| 102 |
+
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
|
| 103 |
+
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
except ValueError as ve: # Catch specific errors like "Failed to fetch posts"
|
| 106 |
+
logging.error(f"ValueError during LinkedIn data processing: {ve}")
|
| 107 |
+
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
|
| 108 |
+
except Exception as e:
|
| 109 |
+
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback
|
| 110 |
+
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>"
|
| 111 |
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
def guarded_fetch_dashboard(token_state):
|