Spaces:
Running
Running
File size: 15,878 Bytes
f20ee95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a placeholder Matplotlib plot indicating no data or an error."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
ax.axis('off')
plt.tight_layout()
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "Plot generation error", ha='center', va='center')
ax.axis('off')
return fig
finally:
# plt.close(fig) # Close the specific figure to free memory
# More robustly, Gradio handles figure objects, explicit close might not always be needed here
# but plt.close('all') in calling functions or after a block of plot generations is safer.
pass
def generate_posts_activity_plot(df, date_column='published_at'): # Default changed as per common use
"""
Generates a plot for posts activity over time.
Assumes df has a date_column (e.g., 'published_at') and groups by date to count posts.
"""
logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Posts activity: DataFrame is empty.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Posts activity: Date column '{date_column}' is missing from DataFrame columns: {df.columns.tolist()}.")
return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
logging.info("Posts activity: No posts after resampling by day.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
ax.set_title('Posts Activity Over Time')
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info("Successfully generated posts activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
finally:
plt.close('all')
def generate_engagement_type_plot(df, likes_col='likes_count', comments_col='comments_count', shares_col='shares_count'):
"""
Generates a bar plot for total engagement types (likes, comments, shares).
Input df is expected to be pre-filtered by date if necessary.
"""
logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
required_cols = [likes_col, comments_col, shares_col]
if df is None or df.empty:
logging.warning("Engagement type: DataFrame is empty.")
return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Post Engagement Types", message=msg)
try:
df_copy = df.copy() # Work on a copy
for col in required_cols: # Ensure numeric, fill NaNs with 0
df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
total_likes = df_copy[likes_col].sum()
total_comments = df_copy[comments_col].sum()
total_shares = df_copy[shares_col].sum()
if total_likes == 0 and total_comments == 0 and total_shares == 0:
logging.info("Engagement type: All engagement counts are zero.")
return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")
engagement_data = {
'Likes': total_likes,
'Comments': total_comments,
'Shares': total_shares
}
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
ax.set_title('Total Post Engagement Types')
ax.set_xlabel('Engagement Type')
ax.set_ylabel('Total Count')
ax.grid(axis='y', linestyle='--', alpha=0.7)
for bar in bars:
yval = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
plt.tight_layout()
logging.info("Successfully generated engagement type plot.")
return fig
except Exception as e:
logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
return create_placeholder_plot(title="Engagement Type Error", message=str(e))
finally:
plt.close('all')
def generate_mentions_activity_plot(df, date_column='date'): # Default changed as per common use
"""
Generates a plot for mentions activity over time.
Assumes df has a date_column (e.g., 'date') and groups by date to count mentions.
"""
logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Mentions activity: DataFrame is empty.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Mentions activity: Date column '{date_column}' is missing from DataFrame columns: {df.columns.tolist()}.")
return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
logging.info("Mentions activity: No mentions after resampling by day.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
ax.set_title('Mentions Activity Over Time')
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info("Successfully generated mentions activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
finally:
plt.close('all')
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""
Generates a pie chart for mention sentiment distribution.
Input df is expected to be pre-filtered by date if necessary.
"""
logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning("Mention sentiment: DataFrame is empty.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
if sentiment_column not in df.columns:
msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
try:
df_copy = df.copy()
sentiment_counts = df_copy[sentiment_column].value_counts()
if sentiment_counts.empty:
logging.info("Mention sentiment: No sentiment data after value_counts.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
colors = {'Positive': 'lightgreen', 'Negative': 'salmon', 'Neutral': 'lightskyblue', 'Mixed': 'gold'}
pie_colors = [colors.get(label, '#cccccc') for label in sentiment_counts.index] # Default color for unknown sentiments
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
ax.set_title('Mention Sentiment Distribution')
ax.axis('equal')
plt.tight_layout()
logging.info("Successfully generated mention sentiment plot.")
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
finally:
plt.close('all')
def generate_follower_growth_plot(df, date_column='date', count_column='total_followers'):
"""
Generates a plot for follower growth over time.
This function receives the *unfiltered* follower DataFrame.
"""
logging.info(f"Generating follower growth plot. Date col: '{date_column}', Count col: '{count_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning("Follower growth: DataFrame is empty.")
return create_placeholder_plot(title="Follower Growth Over Time", message="No follower data available.")
if date_column not in df.columns or count_column not in df.columns:
missing = []
if date_column not in df.columns: missing.append(date_column)
if count_column not in df.columns: missing.append(count_column)
msg = f"Follower growth: Columns missing: {missing}. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Follower Growth Over Time", message=msg)
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[count_column] = pd.to_numeric(df_copy[count_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, count_column])
if df_copy.empty:
logging.info("Follower growth: DataFrame empty after NaNs dropped from date/count columns.")
return create_placeholder_plot(title="Follower Growth Over Time", message="No valid data for follower growth.")
df_copy = df_copy.sort_values(by=date_column)
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df_copy[date_column], df_copy[count_column], marker='o', linestyle='-', color='green')
ax.set_title('Follower Growth Over Time')
ax.set_xlabel('Date')
ax.set_ylabel('Total Followers')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
plt.tight_layout()
logging.info("Successfully generated follower growth plot.")
return fig
except Exception as e:
logging.error(f"Error generating follower growth plot: {e}", exc_info=True)
return create_placeholder_plot(title="Follower Growth Error", message=str(e))
finally:
plt.close('all')
if __name__ == '__main__':
# Create dummy data for testing
posts_data = {
'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03']),
'likes_count': [10, 5, 12, 8, 15, 3],
'comments_count': [2, 1, 3, 1, 4, 0],
'shares_count': [1, 0, 1, 1, 2, 0]
}
sample_posts_df = pd.DataFrame(posts_data)
mentions_data = {
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
}
sample_mentions_df = pd.DataFrame(mentions_data)
follower_data = {
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']),
'total_followers': [100, 105, 115, 120, 118] # Example data
}
sample_follower_stats_df = pd.DataFrame(follower_data)
logging.info("--- Testing Plot Generations ---")
fig1 = generate_posts_activity_plot(sample_posts_df.copy(), date_column='published_at')
if fig1: logging.info("Posts activity plot generated.") # plt.show() for local test
fig2 = generate_engagement_type_plot(sample_posts_df.copy())
if fig2: logging.info("Engagement type plot generated.")
fig3 = generate_mentions_activity_plot(sample_mentions_df.copy(), date_column='date')
if fig3: logging.info("Mentions activity plot generated.")
fig4 = generate_mention_sentiment_plot(sample_mentions_df.copy())
if fig4: logging.info("Mention sentiment plot generated.")
fig5 = generate_follower_growth_plot(sample_follower_stats_df.copy(), date_column='date', count_column='total_followers')
if fig5: logging.info("Follower growth plot generated.")
logging.info("--- Testing Placeholders ---")
fig_placeholder = create_placeholder_plot()
if fig_placeholder: logging.info("Placeholder plot generated.")
empty_df = pd.DataFrame(columns=['published_at']) # Empty df with column
fig_empty_posts = generate_posts_activity_plot(empty_df, date_column='published_at')
if fig_empty_posts: logging.info("Empty posts activity plot (placeholder) generated.")
df_no_col = pd.DataFrame({'some_other_date': pd.to_datetime(['2023-01-01'])})
fig_no_col_posts = generate_posts_activity_plot(df_no_col, date_column='published_at')
if fig_no_col_posts: logging.info("Posts activity with missing column (placeholder) generated.")
logging.info("Test script finished.")
|