Spaces:
Running
Running
Create analytics_plot_generators.py
Browse files- analytics_plot_generators.py +318 -0
analytics_plot_generators.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import logging
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import base64
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
# Configure logging for this module
|
| 9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
|
| 10 |
+
|
| 11 |
+
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
|
| 12 |
+
"""Creates a placeholder Matplotlib plot indicating no data or an error."""
|
| 13 |
+
try:
|
| 14 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 15 |
+
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
|
| 16 |
+
ax.axis('off')
|
| 17 |
+
plt.tight_layout()
|
| 18 |
+
return fig
|
| 19 |
+
except Exception as e:
|
| 20 |
+
logging.error(f"Error creating placeholder plot: {e}")
|
| 21 |
+
fig, ax = plt.subplots()
|
| 22 |
+
ax.text(0.5, 0.5, "Plot generation error", ha='center', va='center')
|
| 23 |
+
ax.axis('off')
|
| 24 |
+
return fig
|
| 25 |
+
finally:
|
| 26 |
+
# plt.close(fig) # Close the specific figure to free memory
|
| 27 |
+
# More robustly, Gradio handles figure objects, explicit close might not always be needed here
|
| 28 |
+
# but plt.close('all') in calling functions or after a block of plot generations is safer.
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def generate_posts_activity_plot(df, date_column='published_at'): # Default changed as per common use
|
| 33 |
+
"""
|
| 34 |
+
Generates a plot for posts activity over time.
|
| 35 |
+
Assumes df has a date_column (e.g., 'published_at') and groups by date to count posts.
|
| 36 |
+
"""
|
| 37 |
+
logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
|
| 38 |
+
if df is None or df.empty:
|
| 39 |
+
logging.warning(f"Posts activity: DataFrame is empty.")
|
| 40 |
+
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
|
| 41 |
+
if date_column not in df.columns:
|
| 42 |
+
logging.warning(f"Posts activity: Date column '{date_column}' is missing from DataFrame columns: {df.columns.tolist()}.")
|
| 43 |
+
return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
df_copy = df.copy()
|
| 47 |
+
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
| 48 |
+
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
| 49 |
+
|
| 50 |
+
df_copy = df_copy.dropna(subset=[date_column])
|
| 51 |
+
if df_copy.empty:
|
| 52 |
+
logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
|
| 53 |
+
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
|
| 54 |
+
|
| 55 |
+
posts_over_time = df_copy.set_index(date_column).resample('D').size()
|
| 56 |
+
|
| 57 |
+
if posts_over_time.empty:
|
| 58 |
+
logging.info("Posts activity: No posts after resampling by day.")
|
| 59 |
+
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
|
| 60 |
+
|
| 61 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 62 |
+
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
|
| 63 |
+
ax.set_title('Posts Activity Over Time')
|
| 64 |
+
ax.set_xlabel('Date')
|
| 65 |
+
ax.set_ylabel('Number of Posts')
|
| 66 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 67 |
+
plt.xticks(rotation=45)
|
| 68 |
+
plt.tight_layout()
|
| 69 |
+
logging.info("Successfully generated posts activity plot.")
|
| 70 |
+
return fig
|
| 71 |
+
except Exception as e:
|
| 72 |
+
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
|
| 73 |
+
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
|
| 74 |
+
finally:
|
| 75 |
+
plt.close('all')
|
| 76 |
+
|
| 77 |
+
def generate_engagement_type_plot(df, likes_col='likes_count', comments_col='comments_count', shares_col='shares_count'):
|
| 78 |
+
"""
|
| 79 |
+
Generates a bar plot for total engagement types (likes, comments, shares).
|
| 80 |
+
Input df is expected to be pre-filtered by date if necessary.
|
| 81 |
+
"""
|
| 82 |
+
logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
|
| 83 |
+
|
| 84 |
+
required_cols = [likes_col, comments_col, shares_col]
|
| 85 |
+
if df is None or df.empty:
|
| 86 |
+
logging.warning("Engagement type: DataFrame is empty.")
|
| 87 |
+
return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
|
| 88 |
+
|
| 89 |
+
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 90 |
+
if missing_cols:
|
| 91 |
+
msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
|
| 92 |
+
logging.warning(msg)
|
| 93 |
+
return create_placeholder_plot(title="Post Engagement Types", message=msg)
|
| 94 |
+
|
| 95 |
+
try:
|
| 96 |
+
df_copy = df.copy() # Work on a copy
|
| 97 |
+
for col in required_cols: # Ensure numeric, fill NaNs with 0
|
| 98 |
+
df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
|
| 99 |
+
|
| 100 |
+
total_likes = df_copy[likes_col].sum()
|
| 101 |
+
total_comments = df_copy[comments_col].sum()
|
| 102 |
+
total_shares = df_copy[shares_col].sum()
|
| 103 |
+
|
| 104 |
+
if total_likes == 0 and total_comments == 0 and total_shares == 0:
|
| 105 |
+
logging.info("Engagement type: All engagement counts are zero.")
|
| 106 |
+
return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")
|
| 107 |
+
|
| 108 |
+
engagement_data = {
|
| 109 |
+
'Likes': total_likes,
|
| 110 |
+
'Comments': total_comments,
|
| 111 |
+
'Shares': total_shares
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
| 115 |
+
bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
|
| 116 |
+
ax.set_title('Total Post Engagement Types')
|
| 117 |
+
ax.set_xlabel('Engagement Type')
|
| 118 |
+
ax.set_ylabel('Total Count')
|
| 119 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
| 120 |
+
|
| 121 |
+
for bar in bars:
|
| 122 |
+
yval = bar.get_height()
|
| 123 |
+
ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
|
| 124 |
+
|
| 125 |
+
plt.tight_layout()
|
| 126 |
+
logging.info("Successfully generated engagement type plot.")
|
| 127 |
+
return fig
|
| 128 |
+
except Exception as e:
|
| 129 |
+
logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
|
| 130 |
+
return create_placeholder_plot(title="Engagement Type Error", message=str(e))
|
| 131 |
+
finally:
|
| 132 |
+
plt.close('all')
|
| 133 |
+
|
| 134 |
+
def generate_mentions_activity_plot(df, date_column='date'): # Default changed as per common use
|
| 135 |
+
"""
|
| 136 |
+
Generates a plot for mentions activity over time.
|
| 137 |
+
Assumes df has a date_column (e.g., 'date') and groups by date to count mentions.
|
| 138 |
+
"""
|
| 139 |
+
logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
|
| 140 |
+
if df is None or df.empty:
|
| 141 |
+
logging.warning(f"Mentions activity: DataFrame is empty.")
|
| 142 |
+
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
|
| 143 |
+
if date_column not in df.columns:
|
| 144 |
+
logging.warning(f"Mentions activity: Date column '{date_column}' is missing from DataFrame columns: {df.columns.tolist()}.")
|
| 145 |
+
return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
df_copy = df.copy()
|
| 149 |
+
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
| 150 |
+
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
| 151 |
+
|
| 152 |
+
df_copy = df_copy.dropna(subset=[date_column])
|
| 153 |
+
if df_copy.empty:
|
| 154 |
+
logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
|
| 155 |
+
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
|
| 156 |
+
|
| 157 |
+
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
|
| 158 |
+
|
| 159 |
+
if mentions_over_time.empty:
|
| 160 |
+
logging.info("Mentions activity: No mentions after resampling by day.")
|
| 161 |
+
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
|
| 162 |
+
|
| 163 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 164 |
+
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
|
| 165 |
+
ax.set_title('Mentions Activity Over Time')
|
| 166 |
+
ax.set_xlabel('Date')
|
| 167 |
+
ax.set_ylabel('Number of Mentions')
|
| 168 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 169 |
+
plt.xticks(rotation=45)
|
| 170 |
+
plt.tight_layout()
|
| 171 |
+
logging.info("Successfully generated mentions activity plot.")
|
| 172 |
+
return fig
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
|
| 175 |
+
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
|
| 176 |
+
finally:
|
| 177 |
+
plt.close('all')
|
| 178 |
+
|
| 179 |
+
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
|
| 180 |
+
"""
|
| 181 |
+
Generates a pie chart for mention sentiment distribution.
|
| 182 |
+
Input df is expected to be pre-filtered by date if necessary.
|
| 183 |
+
"""
|
| 184 |
+
logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
|
| 185 |
+
|
| 186 |
+
if df is None or df.empty:
|
| 187 |
+
logging.warning("Mention sentiment: DataFrame is empty.")
|
| 188 |
+
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
|
| 189 |
+
if sentiment_column not in df.columns:
|
| 190 |
+
msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
|
| 191 |
+
logging.warning(msg)
|
| 192 |
+
return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
df_copy = df.copy()
|
| 196 |
+
sentiment_counts = df_copy[sentiment_column].value_counts()
|
| 197 |
+
if sentiment_counts.empty:
|
| 198 |
+
logging.info("Mention sentiment: No sentiment data after value_counts.")
|
| 199 |
+
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
|
| 200 |
+
|
| 201 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
| 202 |
+
colors = {'Positive': 'lightgreen', 'Negative': 'salmon', 'Neutral': 'lightskyblue', 'Mixed': 'gold'}
|
| 203 |
+
pie_colors = [colors.get(label, '#cccccc') for label in sentiment_counts.index] # Default color for unknown sentiments
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
|
| 207 |
+
ax.set_title('Mention Sentiment Distribution')
|
| 208 |
+
ax.axis('equal')
|
| 209 |
+
plt.tight_layout()
|
| 210 |
+
logging.info("Successfully generated mention sentiment plot.")
|
| 211 |
+
return fig
|
| 212 |
+
except Exception as e:
|
| 213 |
+
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
|
| 214 |
+
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
|
| 215 |
+
finally:
|
| 216 |
+
plt.close('all')
|
| 217 |
+
|
| 218 |
+
def generate_follower_growth_plot(df, date_column='date', count_column='total_followers'):
|
| 219 |
+
"""
|
| 220 |
+
Generates a plot for follower growth over time.
|
| 221 |
+
This function receives the *unfiltered* follower DataFrame.
|
| 222 |
+
"""
|
| 223 |
+
logging.info(f"Generating follower growth plot. Date col: '{date_column}', Count col: '{count_column}'. Input df rows: {len(df) if df is not None else 'None'}")
|
| 224 |
+
|
| 225 |
+
if df is None or df.empty:
|
| 226 |
+
logging.warning("Follower growth: DataFrame is empty.")
|
| 227 |
+
return create_placeholder_plot(title="Follower Growth Over Time", message="No follower data available.")
|
| 228 |
+
if date_column not in df.columns or count_column not in df.columns:
|
| 229 |
+
missing = []
|
| 230 |
+
if date_column not in df.columns: missing.append(date_column)
|
| 231 |
+
if count_column not in df.columns: missing.append(count_column)
|
| 232 |
+
msg = f"Follower growth: Columns missing: {missing}. Available: {df.columns.tolist()}"
|
| 233 |
+
logging.warning(msg)
|
| 234 |
+
return create_placeholder_plot(title="Follower Growth Over Time", message=msg)
|
| 235 |
+
|
| 236 |
+
try:
|
| 237 |
+
df_copy = df.copy()
|
| 238 |
+
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
|
| 239 |
+
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
|
| 240 |
+
|
| 241 |
+
df_copy[count_column] = pd.to_numeric(df_copy[count_column], errors='coerce')
|
| 242 |
+
df_copy = df_copy.dropna(subset=[date_column, count_column])
|
| 243 |
+
|
| 244 |
+
if df_copy.empty:
|
| 245 |
+
logging.info("Follower growth: DataFrame empty after NaNs dropped from date/count columns.")
|
| 246 |
+
return create_placeholder_plot(title="Follower Growth Over Time", message="No valid data for follower growth.")
|
| 247 |
+
|
| 248 |
+
df_copy = df_copy.sort_values(by=date_column)
|
| 249 |
+
|
| 250 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 251 |
+
ax.plot(df_copy[date_column], df_copy[count_column], marker='o', linestyle='-', color='green')
|
| 252 |
+
ax.set_title('Follower Growth Over Time')
|
| 253 |
+
ax.set_xlabel('Date')
|
| 254 |
+
ax.set_ylabel('Total Followers')
|
| 255 |
+
ax.grid(True, linestyle='--', alpha=0.7)
|
| 256 |
+
plt.xticks(rotation=45)
|
| 257 |
+
plt.tight_layout()
|
| 258 |
+
logging.info("Successfully generated follower growth plot.")
|
| 259 |
+
return fig
|
| 260 |
+
except Exception as e:
|
| 261 |
+
logging.error(f"Error generating follower growth plot: {e}", exc_info=True)
|
| 262 |
+
return create_placeholder_plot(title="Follower Growth Error", message=str(e))
|
| 263 |
+
finally:
|
| 264 |
+
plt.close('all')
|
| 265 |
+
|
| 266 |
+
if __name__ == '__main__':
|
| 267 |
+
# Create dummy data for testing
|
| 268 |
+
posts_data = {
|
| 269 |
+
'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03']),
|
| 270 |
+
'likes_count': [10, 5, 12, 8, 15, 3],
|
| 271 |
+
'comments_count': [2, 1, 3, 1, 4, 0],
|
| 272 |
+
'shares_count': [1, 0, 1, 1, 2, 0]
|
| 273 |
+
}
|
| 274 |
+
sample_posts_df = pd.DataFrame(posts_data)
|
| 275 |
+
|
| 276 |
+
mentions_data = {
|
| 277 |
+
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
|
| 278 |
+
'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
|
| 279 |
+
}
|
| 280 |
+
sample_mentions_df = pd.DataFrame(mentions_data)
|
| 281 |
+
|
| 282 |
+
follower_data = {
|
| 283 |
+
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']),
|
| 284 |
+
'total_followers': [100, 105, 115, 120, 118] # Example data
|
| 285 |
+
}
|
| 286 |
+
sample_follower_stats_df = pd.DataFrame(follower_data)
|
| 287 |
+
|
| 288 |
+
logging.info("--- Testing Plot Generations ---")
|
| 289 |
+
|
| 290 |
+
fig1 = generate_posts_activity_plot(sample_posts_df.copy(), date_column='published_at')
|
| 291 |
+
if fig1: logging.info("Posts activity plot generated.") # plt.show() for local test
|
| 292 |
+
|
| 293 |
+
fig2 = generate_engagement_type_plot(sample_posts_df.copy())
|
| 294 |
+
if fig2: logging.info("Engagement type plot generated.")
|
| 295 |
+
|
| 296 |
+
fig3 = generate_mentions_activity_plot(sample_mentions_df.copy(), date_column='date')
|
| 297 |
+
if fig3: logging.info("Mentions activity plot generated.")
|
| 298 |
+
|
| 299 |
+
fig4 = generate_mention_sentiment_plot(sample_mentions_df.copy())
|
| 300 |
+
if fig4: logging.info("Mention sentiment plot generated.")
|
| 301 |
+
|
| 302 |
+
fig5 = generate_follower_growth_plot(sample_follower_stats_df.copy(), date_column='date', count_column='total_followers')
|
| 303 |
+
if fig5: logging.info("Follower growth plot generated.")
|
| 304 |
+
|
| 305 |
+
logging.info("--- Testing Placeholders ---")
|
| 306 |
+
fig_placeholder = create_placeholder_plot()
|
| 307 |
+
if fig_placeholder: logging.info("Placeholder plot generated.")
|
| 308 |
+
|
| 309 |
+
empty_df = pd.DataFrame(columns=['published_at']) # Empty df with column
|
| 310 |
+
fig_empty_posts = generate_posts_activity_plot(empty_df, date_column='published_at')
|
| 311 |
+
if fig_empty_posts: logging.info("Empty posts activity plot (placeholder) generated.")
|
| 312 |
+
|
| 313 |
+
df_no_col = pd.DataFrame({'some_other_date': pd.to_datetime(['2023-01-01'])})
|
| 314 |
+
fig_no_col_posts = generate_posts_activity_plot(df_no_col, date_column='published_at')
|
| 315 |
+
if fig_no_col_posts: logging.info("Posts activity with missing column (placeholder) generated.")
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
logging.info("Test script finished.")
|