Spaces:
Running
Running
File size: 10,111 Bytes
adb3bbe b560569 896ae69 b0464a9 87a87e7 f7fc39b d252c6d adb3bbe 538b42b 179ea1f 9d99925 57334a1 9d99925 b0464a9 3038c7b b0464a9 3038c7b 9f71fb3 9d99925 9f71fb3 9d99925 9f71fb3 9d99925 4a9a646 9d99925 9f71fb3 9d99925 9f71fb3 9d99925 9f71fb3 3038c7b b0464a9 3038c7b b0464a9 4cc3230 b0464a9 f7fc39b b0464a9 538b42b adb3bbe 179ea1f b0464a9 adb3bbe 3038c7b adb3bbe b0464a9 f7fc39b b0464a9 f7fc39b 3038c7b b0464a9 73e88eb 179ea1f 9f71fb3 3038c7b b0464a9 adb3bbe faf26ff 7ab0240 adb3bbe f7fc39b 179ea1f a9b7f24 b0464a9 88d3a6e b0464a9 2051c7a b0464a9 f466d89 b0464a9 6d43d2f b0464a9 179ea1f adb3bbe 179ea1f b0464a9 adb3bbe 06d22e5 538b42b b0464a9 538b42b 179ea1f b8b7e00 538b42b adb3bbe 179ea1f b0464a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os
import logging
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
from Bubble_API_Calls import fetch_linkedin_token_from_bubble, bulk_upload_to_bubble
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment,
compile_detailed_posts,
prepare_data_for_bubble
)
def check_token_status(token_state):
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None}
new_state.update({"token": None, "org_urn": org_urn})
client_id = os.environ.get("Linkedin_client_id")
if not client_id:
print("β CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
new_state["client_id"] = "ENV VAR MISSING"
return check_token_status(new_state), new_state
new_state["client_id"] = client_id
if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token:
return check_token_status(new_state), new_state
print(f"Attempting to fetch token from Bubble with user token: {url_user_token}")
parsed = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed, dict) and "access_token" in parsed:
new_state["token"] = parsed
print("β
Token successfully fetched from Bubble.")
else:
print("β Failed to fetch a valid token from Bubble.")
return check_token_status(new_state), new_state
def guarded_fetch_posts(token_state):
logging.info("Starting guarded_fetch_posts process.")
if not token_state or not token_state.get("token"):
logging.error("Access denied. No token available.")
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>"
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn') # Ensure 'org_urn' is correctly fetched from token_state
if not org_urn:
logging.error("Organization URN (org_urn) not found in token_state.")
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>"
if not client_id:
logging.error("Client ID not found in token_state.")
return "<p style='color:red; text-align:center;'>β Configuration error: Client ID missing.</p>"
try:
# Step 1: Fetch core post data (text, summary, category) and their basic stats
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
# org_name is returned as the third item, captured as _ if not used directly here
if not processed_raw_posts:
logging.info("No posts found to process after step 1.")
return "<p style='color:orange; text-align:center;'>βΉοΈ No posts found to process.</p>"
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
# Step 2: Fetch comments for these posts
logging.info("Step 2: Fetching comments.")
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
# Step 3: Analyze sentiment of the comments
logging.info("Step 3: Analyzing sentiment.")
sentiments_per_post = analyze_sentiment(all_comments_data)
# Step 4: Compile detailed post objects
logging.info("Step 4: Compiling detailed posts.")
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
# Step 5: Prepare data for Bubble
logging.info("Step 5: Preparing data for Bubble.")
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
# Step 6: Bulk upload to Bubble
logging.info("Step 6: Uploading data to Bubble.")
bulk_upload_to_bubble(li_posts, "LI_posts")
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
return "<p style='color:green; text-align:center;'>β
Posts and comments uploaded to Bubble.</p>"
except ValueError as ve: # Catch specific errors like "Failed to fetch posts"
logging.error(f"ValueError during LinkedIn data processing: {ve}")
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>"
except Exception as e:
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>"
def guarded_fetch_dashboard(token_state):
if not token_state or not token_state.get("token"):
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>"
return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
def guarded_fetch_analytics(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>β Access denied. No token available.</p>",
None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
def run_mentions_and_load(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>β Access denied. No token available.</p>", None)
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None})
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
org_urn = gr.Textbox(visible=False) # Needed for input, was missing from initial script
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn])
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn, token_state],
outputs=[status_box, token_state]
)
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
with gr.Tabs():
with gr.TabItem("1οΈβ£ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
sync_posts_to_bubble_btn = gr.Button("π Fetch, Analyze & Store Posts to Bubble", variant="primary")
dashboard_html_output = gr.HTML("<p style='text-align: center; color: #555;'>Click the button to fetch posts and store them in Bubble. Status will appear here.</p>")
# Corrected: The click handler now calls guarded_fetch_posts
# and dashboard_html_output is correctly defined in this scope.
sync_posts_to_bubble_btn.click(
fn=guarded_fetch_posts,
inputs=[token_state],
outputs=[dashboard_html_output]
)
with gr.TabItem("2οΈβ£ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row():
eng_rate_plot = gr.Plot()
with gr.Row():
interaction_plot = gr.Plot()
with gr.Row():
eb_plot = gr.Plot()
with gr.Row():
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3οΈβ£ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot()
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.")
app.launch(server_name="0.0.0.0", server_port=7860, share=True)
|