File size: 52,015 Bytes
f20ee95
 
 
 
 
 
8019346
617c2c1
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
 
 
 
 
 
 
 
f20ee95
 
 
 
 
8019346
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
f20ee95
 
 
 
 
8019346
f20ee95
8019346
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
f20ee95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
8019346
f20ee95
 
 
 
 
 
 
 
 
 
 
 
b7a0e8c
 
 
 
 
 
 
 
 
 
 
8019346
b7a0e8c
8019346
 
 
 
b7a0e8c
8019346
 
b7a0e8c
f20ee95
 
 
b7a0e8c
8019346
 
 
 
b7a0e8c
 
 
 
 
 
 
8019346
 
 
 
 
b7a0e8c
 
 
8019346
 
 
b7a0e8c
8019346
 
 
 
 
 
 
 
 
 
b7a0e8c
 
 
 
 
 
 
 
 
8019346
b7a0e8c
8019346
 
 
 
b7a0e8c
8019346
 
b7a0e8c
f20ee95
8019346
 
b7a0e8c
8019346
 
 
 
b7a0e8c
 
 
 
 
8019346
b7a0e8c
8019346
 
b7a0e8c
 
 
 
8019346
b7a0e8c
8019346
b7a0e8c
 
 
 
 
 
 
 
 
 
 
8019346
b7a0e8c
 
8019346
 
 
 
 
b7a0e8c
8019346
 
 
 
 
 
 
 
 
 
b7a0e8c
 
 
 
 
 
 
 
 
 
8019346
 
 
 
b7a0e8c
8019346
 
b7a0e8c
8019346
b7a0e8c
8019346
 
 
 
b7a0e8c
8019346
 
 
 
b7a0e8c
 
8019346
b7a0e8c
 
 
 
 
8019346
 
 
 
 
 
 
b7a0e8c
 
 
8019346
b7a0e8c
 
 
 
8019346
b7a0e8c
 
 
 
8019346
 
b7a0e8c
 
 
8019346
b7a0e8c
 
 
 
 
 
 
 
 
8019346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a0e8c
8019346
 
 
 
 
 
 
 
 
b7a0e8c
617c2c1
 
 
 
 
adab1ec
617c2c1
b7a0e8c
8019346
 
 
 
 
 
 
 
 
 
b7a0e8c
8019346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ee95
b7a0e8c
 
f20ee95
8019346
b7a0e8c
 
8019346
f20ee95
8019346
 
f20ee95
8019346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7a0e8c
617c2c1
8019346
 
 
 
 
 
 
 
f20ee95
 
 
 
 
8019346
 
f20ee95
 
 
617c2c1
adab1ec
617c2c1
adab1ec
 
 
 
 
617c2c1
 
adab1ec
 
 
 
 
 
617c2c1
 
 
adab1ec
617c2c1
adab1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
 
adab1ec
 
617c2c1
 
adab1ec
 
 
 
 
 
 
 
 
617c2c1
 
adab1ec
 
 
 
 
 
617c2c1
adab1ec
617c2c1
adab1ec
617c2c1
adab1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
adab1ec
 
 
 
 
 
617c2c1
adab1ec
617c2c1
adab1ec
617c2c1
adab1ec
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
adab1ec
 
617c2c1
 
 
adab1ec
 
 
 
 
617c2c1
adab1ec
617c2c1
 
 
 
 
 
adab1ec
617c2c1
 
 
adab1ec
 
 
617c2c1
adab1ec
617c2c1
adab1ec
 
 
 
 
617c2c1
adab1ec
 
617c2c1
adab1ec
 
617c2c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adab1ec
 
 
 
 
 
 
 
 
8019346
f20ee95
 
 
617c2c1
8019346
 
 
adab1ec
8019346
 
617c2c1
 
 
 
 
 
 
 
 
 
 
 
f20ee95
8019346
f20ee95
b7a0e8c
f20ee95
b7a0e8c
 
 
 
 
 
 
 
 
617c2c1
 
 
 
b7a0e8c
 
617c2c1
 
 
 
 
b7a0e8c
 
617c2c1
 
 
 
 
b7a0e8c
f20ee95
 
 
617c2c1
 
b7a0e8c
617c2c1
b7a0e8c
 
617c2c1
8019346
b7a0e8c
 
 
 
 
 
617c2c1
b7a0e8c
617c2c1
8019346
617c2c1
 
 
 
 
 
 
8019346
617c2c1
 
8019346
617c2c1
8019346
617c2c1
 
adab1ec
617c2c1
 
 
 
 
 
 
 
 
adab1ec
 
617c2c1
 
 
 
 
 
adab1ec
617c2c1
 
adab1ec
617c2c1
 
 
 
 
 
 
 
adab1ec
617c2c1
 
 
 
 
 
 
 
 
 
adab1ec
f20ee95
8019346
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import ast # For safely evaluating string representations of lists

# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
    """Creates a placeholder Matplotlib plot indicating no data or an error."""
    try:
        fig, ax = plt.subplots(figsize=(8, 4)) 
        ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
        ax.axis('off') 
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error creating placeholder plot: {e}")
        # Fallback placeholder if the above fails
        fig_err, ax_err = plt.subplots()
        ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center')
        ax_err.axis('off')
        return fig_err
    # No plt.close(fig) here as Gradio handles the figure object.

def generate_posts_activity_plot(df, date_column='published_at'):
    """Generates a plot for posts activity over time."""
    logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Posts activity: DataFrame is empty.")
        return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")

    try:
        df_copy = df.copy() 
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")

        posts_over_time = df_copy.set_index(date_column).resample('D').size() 
        
        if posts_over_time.empty:
            logging.info("Posts activity: No posts after resampling by day.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")

        fig, ax = plt.subplots(figsize=(10, 5))
        posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
        ax.set_title('Posts Activity Over Time')
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        logging.info("Successfully generated posts activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
        return create_placeholder_plot(title="Posts Activity Error", message=str(e))
    finally:
        plt.close('all') 

def generate_engagement_type_plot(df, likes_col='likeCount', comments_col='commentCount', shares_col='shareCount'): # Updated col names
    """Generates a bar plot for total engagement types (likes, comments, shares)."""
    logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
    
    required_cols = [likes_col, comments_col, shares_col]
    if df is None or df.empty:
        logging.warning("Engagement type: DataFrame is empty.")
        return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
    
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
        logging.warning(msg)
        return create_placeholder_plot(title="Post Engagement Types", message=msg)

    try:
        df_copy = df.copy() 
        for col in required_cols: 
            df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)

        total_likes = df_copy[likes_col].sum()
        total_comments = df_copy[comments_col].sum()
        total_shares = df_copy[shares_col].sum()

        if total_likes == 0 and total_comments == 0 and total_shares == 0:
            logging.info("Engagement type: All engagement counts are zero.")
            return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")

        engagement_data = {
            'Likes': total_likes,
            'Comments': total_comments,
            'Shares': total_shares
        }
        
        fig, ax = plt.subplots(figsize=(8, 5))
        bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
        ax.set_title('Total Post Engagement Types')
        ax.set_xlabel('Engagement Type')
        ax.set_ylabel('Total Count')
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        
        for bar in bars:
            yval = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
            
        plt.tight_layout()
        logging.info("Successfully generated engagement type plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
        return create_placeholder_plot(title="Engagement Type Error", message=str(e))
    finally:
        plt.close('all')

def generate_mentions_activity_plot(df, date_column='date'):
    """Generates a plot for mentions activity over time."""
    logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Mentions activity: DataFrame is empty.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
            
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")

        mentions_over_time = df_copy.set_index(date_column).resample('D').size()
        
        if mentions_over_time.empty:
            logging.info("Mentions activity: No mentions after resampling by day.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")

        fig, ax = plt.subplots(figsize=(10, 5))
        mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
        ax.set_title('Mentions Activity Over Time')
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Mentions')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        logging.info("Successfully generated mentions activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
        return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
    finally:
        plt.close('all')

def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'): 
    """Generates a pie chart for mention sentiment distribution."""
    logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    
    if df is None or df.empty:
        logging.warning("Mention sentiment: DataFrame is empty.")
        return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
    if sentiment_column not in df.columns:
        msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
        logging.warning(msg)
        return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)

    try:
        df_copy = df.copy()
        sentiment_counts = df_copy[sentiment_column].value_counts()
        if sentiment_counts.empty:
            logging.info("Mention sentiment: No sentiment data after value_counts.")
            return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")

        fig, ax = plt.subplots(figsize=(8, 5))
        # Using a qualitative colormap like 'Pastel1' or 'Set3' can be good for categorical data
        colors_map = plt.cm.get_cmap('Pastel1', len(sentiment_counts)) 
        pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
        ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
        ax.set_title('Mention Sentiment Distribution')
        ax.axis('equal') 
        plt.tight_layout()
        logging.info("Successfully generated mention sentiment plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
        return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
    finally:
        plt.close('all')

# --- Updated Follower Plot Functions ---

def generate_followers_count_over_time_plot(df, date_info_column='category_name', 
                                            organic_count_col='follower_count_organic', 
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type', 
                                            type_value='follower_gains_monthly'):
    """
    Generates a plot for specific follower counts (organic and paid) over time.
    Date information is expected in 'date_info_column' as strings (e.g., "2024-08-01").
    """
    title = f"Followers Count Over Time ({type_value})"
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")
    
    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy() # Use .copy() to avoid SettingWithCopyWarning

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")

        # Convert date_info_column to datetime
        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        
        df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers')
        ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers')
        
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Follower Count')
        ax.legend()
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_followers_growth_rate_plot(df, date_info_column='category_name', 
                                        organic_count_col='follower_count_organic', 
                                        paid_count_col='follower_count_paid',
                                        type_filter_column='follower_count_type', 
                                        type_value='follower_gains_monthly'):
    """
    Calculates and plots follower growth rate (organic and paid) over time.
    Date information is expected in 'date_info_column' as strings (e.g., "2024-08-01").
    """
    title = f"Follower Growth Rate ({type_value})"
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")

    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
        
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")

        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
        
        df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')

        if df_filtered.empty or len(df_filtered) < 2: # Need at least 2 points for pct_change
            return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")

        df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
        df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
        
        # Replace inf with NaN then drop NaNs for growth rates
        df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
        # df_filtered.dropna(subset=['organic_growth_rate', 'paid_growth_rate'], how='all', inplace=True) # Keep row if at least one rate is valid

        fig, ax = plt.subplots(figsize=(10, 5))
        
        plotted_organic = False
        if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate')
            plotted_organic = True
            
        plotted_paid = False
        if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate')
            plotted_paid = True

        if not plotted_organic and not plotted_paid:
            return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")

        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Growth Rate (%)')
        ax.yaxis.set_major_formatter(mticker.PercentFormatter())
        ax.legend()
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_followers_by_demographics_plot(df, category_col='category_name', 
                                            organic_count_col='follower_count_organic', 
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type', 
                                            type_value=None, plot_title="Followers by Demographics"):
    """
    Generates a grouped bar chart for follower demographics (organic and paid).
    'category_col' here is the demographic attribute (e.g., Location, Industry).
    """
    logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=plot_title, message="No follower data available.")
    
    required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    
    if type_value is None: 
        return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")

    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()

        if df_filtered.empty:
            return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")

        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        
        demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
        # Sort by total followers (organic + paid) for better visualization
        demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
        demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])


        if demographics_data.empty:
            return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")
        
        top_n = 10 
        if len(demographics_data) > top_n:
            demographics_data = demographics_data.head(top_n)
            plot_title_updated = f"{plot_title} (Top {top_n})"
        else:
            plot_title_updated = plot_title

        fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
        
        bar_width = 0.35
        index = np.arange(len(demographics_data.index))

        bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color='skyblue')
        bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color='lightcoral')

        ax.set_title(plot_title_updated)
        ax.set_xlabel(category_col.replace('_', ' ').title())
        ax.set_ylabel('Number of Followers')
        ax.set_xticks(index)
        ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
        ax.legend()
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        
        # Add labels on top of bars
        for bar_group in [bars1, bars2]:
            for bar in bar_group:
                yval = bar.get_height()
                if yval > 0: # Only add label if value is not zero
                    ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]), 
                            str(int(yval)), ha='center', va='bottom', fontsize=8)

        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
    finally:
        plt.close('all')


def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
    """Generates a plot for engagement rate over time."""
    title = "Engagement Rate Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for engagement rate.")
    
    required_cols = [date_column, engagement_rate_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)

        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
        engagement_over_time = engagement_over_time.dropna() 

        if engagement_over_time.empty:
            return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Engagement Rate')
        # Adjust xmax for PercentFormatter based on whether rate is 0-1 or 0-100
        max_rate_val = engagement_over_time.max()
        formatter_xmax = 1.0 if max_rate_val <= 1.5 and max_rate_val >=0 else 100.0 # Heuristic for 0-1 vs 0-100 scale
        if max_rate_val > 1.5 and formatter_xmax == 1.0: # If data seems to be percentage but formatted as decimal
             formatter_xmax = 100.0
        elif max_rate_val > 100 and formatter_xmax == 1.0: # If data is clearly > 100 but we assumed 0-1
            formatter_xmax = max_rate_val # Or some other sensible upper bound for formatting

        ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax)) 
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'): 
    """Generates a plot for reach (clicks) over time."""
    title = "Reach Over Time (Clicks)"
    logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for reach.")

    required_cols = [date_column, reach_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)

        if df_copy.empty: # After dropping NaNs for essential columns
            return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")

        reach_over_time = df_copy.resample('D')[reach_col].sum()
        # No need to check if reach_over_time is empty if df_copy wasn't, sum of NaNs is 0.
        # Plot will show 0 if all sums are 0.

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Clicks')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
    """Generates a plot for impressions over time."""
    title = "Impressions Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for impressions.")

    required_cols = [date_column, impressions_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)

        if df_copy.empty: # After dropping NaNs for essential columns
                return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")

        impressions_over_time = df_copy.resample('D')[impressions_col].sum()

        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Impressions')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

# --- New Plot Functions from User Request ---
def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
    """Generates a plot for likes over time."""
    title = "Reactions (Likes) Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for likes.")
    required_cols = [date_column, likes_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")
        
        data_over_time = df_copy.resample('D')[likes_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Likes')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
    """Generates a plot for clicks over time (can be same as reach if clicks are primary reach metric)."""
    # This is essentially the same as generate_reach_over_time_plot if reach_col is 'clickCount'.
    # For clarity, keeping it separate if user wants to distinguish or use a different column later.
    title = "Clicks Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Clicks Col: '{clicks_col}'. DF rows: {len(df) if df is not None else 'None'}")
    # Reusing logic from generate_reach_over_time_plot
    return generate_reach_over_time_plot(df, date_column, clicks_col)


def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
    """Generates a plot for shares over time."""
    title = "Shares Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for shares.")
    required_cols = [date_column, shares_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        data_over_time = df_copy.resample('D')[shares_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Shares')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
    """Generates a plot for comments over time."""
    title = "Comments Over Time"
    logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for comments.")
    required_cols = [date_column, comments_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        data_over_time = df_copy.resample('D')[comments_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold')
        ax.set_title(title)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Comments')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
    """
    Generates a pie chart for comment sentiment distribution.
    Assumes df might be post-level with an aggregated or example sentiment,
    or ideally, a comment-level df with sentiment per comment.
    If date_column is provided, it's for logging/context but not directly used for filtering here.
    """
    title = "Breakdown of Comments by Sentiment"
    logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data for comment sentiment.")
    if sentiment_column not in df.columns:
        # Check for a common alternative if the primary is missing (e.g. from post-level data)
        if 'sentiment' in df.columns and sentiment_column != 'sentiment':
            logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
            sentiment_column = 'sentiment' # Use fallback
        else:
            return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' (and fallback 'sentiment') not found. Available: {df.columns.tolist()}")
    
    # If the sentiment column has no valid data (all NaNs, or not convertible)
    if df[sentiment_column].isnull().all():
        return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")

    try:
        df_copy = df.copy()
        # Ensure the sentiment column is treated as categorical (string)
        df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
        sentiment_counts = df_copy[sentiment_column].value_counts().dropna() # Dropna for safety

        if sentiment_counts.empty or sentiment_counts.sum() == 0:
            return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")

        fig, ax = plt.subplots(figsize=(8, 5))
        colors_map = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
        pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
        
        ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
        ax.set_title(title)
        ax.axis('equal') 
        plt.tight_layout()
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

# --- NEW PLOT FUNCTIONS FOR CONTENT STRATEGY ---
def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
    """Generates a plot for post frequency over time (e.g., daily, weekly, monthly)."""
    title = f"Post Frequency Over Time ({resample_period})"
    logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if date_column not in df.columns:
        return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")

    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid date entries found.")

        post_frequency = df_copy.set_index(date_column).resample(resample_period).size()
        
        if post_frequency.empty:
            return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")

        fig, ax = plt.subplots(figsize=(10, 5))
        post_frequency.plot(kind='bar' if resample_period in ['M', 'W'] else 'line', ax=ax, marker='o' if resample_period=='D' else None)
        ax.set_title(title)
        ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        plt.tight_layout()
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def generate_content_format_breakdown_plot(df, format_col='media_type'):
    """Generates a bar chart for breakdown of content by format."""
    title = "Breakdown of Content by Format"
    logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if format_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        format_counts = df_copy[format_col].value_counts().dropna()

        if format_counts.empty:
            return create_placeholder_plot(title=title, message="No content format data available.")

        fig, ax = plt.subplots(figsize=(8, 6))
        format_counts.plot(kind='bar', ax=ax, color='skyblue')
        ax.set_title(title)
        ax.set_xlabel('Media Type')
        ax.set_ylabel('Number of Posts')
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        plt.xticks(rotation=45, ha="right")
        plt.tight_layout()
        
        # Add counts on top of bars
        for i, v in enumerate(format_counts):
            ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom')
            
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')

def _parse_eb_label(label_data):
    """Helper to parse eb_labels which might be lists or string representations of lists."""
    if isinstance(label_data, list):
        return label_data
    if isinstance(label_data, str):
        try:
            # Try to evaluate as a list
            parsed = ast.literal_eval(label_data)
            if isinstance(parsed, list):
                return parsed
            # If it's a single string not in list format, treat as a single label
            return [str(parsed)] 
        except (ValueError, SyntaxError):
            # If not a list string, treat the whole string as one label
            return [label_data] if label_data.strip() else []
    if pd.isna(label_data):
        return []
    return [] # Default for other types

def generate_content_topic_breakdown_plot(df, topics_col='eb_labels', top_n=15):
    """Generates a horizontal bar chart for breakdown of content by topics."""
    title = f"Breakdown of Content by Topics (Top {top_n})"
    logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if topics_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")

    try:
        df_copy = df.copy()
        
        # Apply parsing and explode
        parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
        exploded_labels = parsed_labels.explode().dropna()

        if exploded_labels.empty:
            return create_placeholder_plot(title=title, message="No topic data found after processing labels.")

        topic_counts = exploded_labels.value_counts()

        if topic_counts.empty:
            return create_placeholder_plot(title=title, message="No topics to display after counting.")
        
        # Take top N and sort for plotting (descending for horizontal bar)
        top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)

        fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
        top_topics.plot(kind='barh', ax=ax, color='mediumseagreen')
        ax.set_title(title)
        ax.set_xlabel('Number of Posts')
        ax.set_ylabel('Topic')
        
        # Add counts next to bars
        for i, (topic, count) in enumerate(top_topics.items()):
            ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center')
            
        plt.tight_layout()
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        plt.close('all')


if __name__ == '__main__':
    # Create dummy data for testing
    posts_data = {
        'id': [f'post{i}' for i in range(1, 8)], # Increased to 7 for more data
        'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03', '2023-01-04']),
        'likeCount': [10, 5, 12, 8, 15, 3, 20],
        'commentCount': [2, 1, 3, 1, 4, 0, 5],
        'shareCount': [1, 0, 1, 1, 2, 0, 1], 
        'clickCount': [20, 15, 30, 22, 40, 10, 50],
        'impressionCount': [200, 150, 300, 220, 400, 100, 500],
        'engagement': [0.05, 0.04, 0.06, 0.055, 0.07, 0.03, 0.08],
        'media_type': ['TEXT', 'IMAGE', 'TEXT', 'VIDEO', 'IMAGE', 'TEXT', 'IMAGE'], # New column
        'eb_labels': [ # New column with various formats
            "['AI', 'Tech']", 
            ['Innovation'], 
            'General', 
            None, 
            ['Tech', 'Future'],
            "['AI', 'Development']",
            ['Tech']
        ],
        'comment_sentiment': ['Positive', 'Neutral', 'Positive', 'Negative', 'Positive', 'Neutral', 'Positive'] # For comment sentiment plot
    }
    sample_merged_posts_df = pd.DataFrame(posts_data)

    # Updated Follower Stats Data
    follower_data = {
        'follower_count_type': [
            'follower_gains_monthly', 'follower_gains_monthly', 'follower_gains_monthly', 
            'follower_geo', 'follower_geo', 'follower_geo',
            'follower_function', 'follower_function',
            'follower_industry', 'follower_industry',
            'follower_seniority', 'follower_seniority'
        ],
        'category_name': [
            '2024-01-01', '2024-02-01', '2024-03-01', # Dates for monthly gains
            'USA', 'Canada', 'UK',                   # Geo
            'Engineering', 'Sales',                  # Function/Role
            'Tech', 'Finance',                       # Industry
            'Senior', 'Junior'                       # Seniority
        ],
        'follower_count_organic': [
            100, 110, 125,   # Organic monthly gains
            500, 300, 150,   # Organic Geo counts
            400, 200,        # Organic Role counts
            250, 180,        # Organic Industry counts
            300, 220         # Organic Seniority counts
        ],
        'follower_count_paid': [
            20, 30, 25,    # Paid monthly gains
            50, 40, 60,    # Paid Geo counts
            30, 20,        # Paid Role counts
            45, 35,        # Paid Industry counts
            60, 40         # Paid Seniority counts
        ]
    }
    sample_follower_stats_df = pd.DataFrame(follower_data)

    logging.info("--- Testing Existing Plot Generations ---")
    # ... (keep existing tests for older plots) ...
    fig_posts_activity = generate_posts_activity_plot(sample_merged_posts_df.copy())
    if fig_posts_activity: logging.info("Posts activity plot generated.")
    
    fig_engagement_type = generate_engagement_type_plot(sample_merged_posts_df.copy())
    if fig_engagement_type: logging.info("Engagement type plot generated.")

    mentions_data = {
        'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
        'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
    }
    sample_mentions_df = pd.DataFrame(mentions_data)
    fig_mentions_activity = generate_mentions_activity_plot(sample_mentions_df.copy())
    if fig_mentions_activity: logging.info("Mentions activity plot generated.")
    fig_mention_sentiment = generate_mention_sentiment_plot(sample_mentions_df.copy())
    if fig_mention_sentiment: logging.info("Mention sentiment plot generated.")

    fig_followers_count = generate_followers_count_over_time_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
    if fig_followers_count: logging.info("Followers Count Over Time plot generated.")
    fig_followers_rate = generate_followers_growth_rate_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
    if fig_followers_rate: logging.info("Followers Growth Rate plot generated.")
    fig_geo = generate_followers_by_demographics_plot(sample_follower_stats_df.copy(), type_value='follower_geo', plot_title="Followers by Location")
    if fig_geo: logging.info("Followers by Location plot generated.")
    # ... add other follower demographic tests ...

    fig_eng_rate = generate_engagement_rate_over_time_plot(sample_merged_posts_df.copy())
    if fig_eng_rate: logging.info("Engagement Rate Over Time plot generated.")
    fig_reach = generate_reach_over_time_plot(sample_merged_posts_df.copy())
    if fig_reach: logging.info("Reach Over Time (Clicks) plot generated.")
    fig_impressions = generate_impressions_over_time_plot(sample_merged_posts_df.copy())
    if fig_impressions: logging.info("Impressions Over Time plot generated.")
    
    fig_likes_time = generate_likes_over_time_plot(sample_merged_posts_df.copy())
    if fig_likes_time: logging.info("Likes Over Time plot generated.")
    fig_clicks_time = generate_clicks_over_time_plot(sample_merged_posts_df.copy()) # Uses reach logic
    if fig_clicks_time: logging.info("Clicks Over Time plot generated.")
    fig_shares_time = generate_shares_over_time_plot(sample_merged_posts_df.copy())
    if fig_shares_time: logging.info("Shares Over Time plot generated.")
    fig_comments_time = generate_comments_over_time_plot(sample_merged_posts_df.copy())
    if fig_comments_time: logging.info("Comments Over Time plot generated.")
    fig_comments_sentiment = generate_comments_sentiment_breakdown_plot(sample_merged_posts_df.copy(), sentiment_column='comment_sentiment')
    if fig_comments_sentiment: logging.info("Comments Sentiment Breakdown plot generated.")


    logging.info("--- Testing NEW Plot Generations for Content Strategy ---")
    fig_post_freq = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='D')
    if fig_post_freq: logging.info("Post Frequency (Daily) plot generated.")
    
    fig_post_freq_w = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='W')
    if fig_post_freq_w: logging.info("Post Frequency (Weekly) plot generated.")

    fig_content_format = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='media_type')
    if fig_content_format: logging.info("Content Format Breakdown plot generated.")

    fig_content_topics = generate_content_topic_breakdown_plot(sample_merged_posts_df.copy(), topics_col='eb_labels', top_n=5)
    if fig_content_topics: logging.info("Content Topic Breakdown plot generated.")
    
    # Test with missing columns / empty data for new plots
    logging.info("--- Testing NEW Plot Generations with Edge Cases ---")
    empty_df = pd.DataFrame()
    fig_post_freq_empty = generate_post_frequency_plot(empty_df.copy())
    if fig_post_freq_empty: logging.info("Post Frequency (empty df) placeholder generated.")
    
    fig_content_format_missing_col = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='non_existent_col')
    if fig_content_format_missing_col: logging.info("Content Format (missing col) placeholder generated.")

    fig_content_topics_no_labels = generate_content_topic_breakdown_plot(sample_merged_posts_df[['id', 'published_at']].copy(), topics_col='eb_labels') # eb_labels won't exist
    if fig_content_topics_no_labels: logging.info("Content Topic (missing col) placeholder generated.")

    df_no_topics_data = sample_merged_posts_df.copy()
    df_no_topics_data['eb_labels'] = None
    fig_content_topics_all_none = generate_content_topic_breakdown_plot(df_no_topics_data, topics_col='eb_labels')
    if fig_content_topics_all_none: logging.info("Content Topic (all None labels) placeholder generated.")


    logging.info("Test script finished. Review plots if displayed locally or saved.")