Spaces:
Running
Running
File size: 54,217 Bytes
f20ee95 8019346 617c2c1 f20ee95 bc55376 8019346 bc55376 f20ee95 7f147c5 bc55376 f20ee95 8019346 bc55376 f20ee95 7f147c5 bc55376 f20ee95 b7a0e8c 7f147c5 bc55376 8019346 7f147c5 bc55376 8019346 7f147c5 bc55376 8019346 bc55376 8019346 7f147c5 bc55376 8019346 bc55376 f20ee95 adab1ec bc55376 adab1ec bc55376 adab1ec bc55376 adab1ec bc55376 adab1ec 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 617c2c1 bc55376 7f147c5 bc55376 617c2c1 bc55376 7f147c5 bc55376 7f147c5 bc55376 adab1ec 8019346 f20ee95 bc55376 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import ast # For safely evaluating string representations of lists
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a placeholder Matplotlib plot indicating no data or an error."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
ax.axis('off')
fig.tight_layout() # MODIFIED
# Add spacing for consistency, though it might be less critical for placeholders
fig.subplots_adjust(top=0.90)
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
# Fallback placeholder if the above fails
fig_err, ax_err = plt.subplots()
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center')
ax_err.axis('off')
fig_err.tight_layout() # MODIFIED
fig_err.subplots_adjust(top=0.90)
return fig_err
# No plt.close(fig) here as Gradio handles the figure object.
def generate_posts_activity_plot(df, date_column='published_at'):
"""Generates a plot for posts activity over time."""
logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Posts activity: DataFrame is empty.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
fig = None # Initialize fig to None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
logging.info("Posts activity: No posts after resampling by day.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
# ax.set_title('Posts Activity Over Time', y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
logging.info("Successfully generated posts activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
if fig: plt.close(fig) # Close if fig was created before error
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
finally:
pass
def generate_engagement_type_plot(df, likes_col='likeCount', comments_col='commentCount', shares_col='shareCount'):
"""Generates a bar plot for total engagement types (likes, comments, shares)."""
logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
required_cols = [likes_col, comments_col, shares_col]
if df is None or df.empty:
logging.warning("Engagement type: DataFrame is empty.")
return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Post Engagement Types", message=msg)
fig = None
try:
df_copy = df.copy()
for col in required_cols:
df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
total_likes = df_copy[likes_col].sum()
total_comments = df_copy[comments_col].sum()
total_shares = df_copy[shares_col].sum()
if total_likes == 0 and total_comments == 0 and total_shares == 0:
logging.info("Engagement type: All engagement counts are zero.")
return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")
engagement_data = {
'Likes': total_likes,
'Comments': total_comments,
'Shares': total_shares
}
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
# ax.set_title('Total Post Engagement Types', y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Engagement Type')
ax.set_ylabel('Total Count')
ax.grid(axis='y', linestyle='--', alpha=0.7)
for bar in bars:
yval = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.1) # Adjusted spacing
logging.info("Successfully generated engagement type plot.")
return fig
except Exception as e:
logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Engagement Type Error", message=str(e))
finally:
pass
def generate_mentions_activity_plot(df, date_column='date'):
"""Generates a plot for mentions activity over time."""
logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Mentions activity: DataFrame is empty.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
fig = None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
logging.info("Mentions activity: No mentions after resampling by day.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
# ax.set_title('Mentions Activity Over Time', y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
logging.info("Successfully generated mentions activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
finally:
pass
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""Generates a pie chart for mention sentiment distribution."""
logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning("Mention sentiment: DataFrame is empty.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
if sentiment_column not in df.columns:
msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
fig = None
try:
df_copy = df.copy()
sentiment_counts = df_copy[sentiment_column].value_counts()
if sentiment_counts.empty:
logging.info("Mention sentiment: No sentiment data after value_counts.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
colors_map = plt.cm.get_cmap('Pastel1', len(sentiment_counts))
pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
# ax.set_title('Mention Sentiment Distribution', y=1.03) # Matplotlib title REMOVED
ax.axis('equal')
fig.tight_layout()
fig.subplots_adjust(top=0.92) # Adjusted spacing
logging.info("Successfully generated mention sentiment plot.")
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
finally:
pass
# --- Updated Follower Plot Functions ---
def generate_followers_count_over_time_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
title = f"Followers Count Over Time ({type_value})" # This is for logging/placeholder, not displayed title
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers')
ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
ax.legend()
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_followers_growth_rate_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
title = f"Follower Growth Rate ({type_value})" # This is for logging/placeholder, not displayed title
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
if df_filtered.empty or len(df_filtered) < 2:
return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
fig, ax = plt.subplots(figsize=(10, 5))
plotted_organic = False
if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate')
plotted_organic = True
plotted_paid = False
if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate')
plotted_paid = True
if not plotted_organic and not plotted_paid:
return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Growth Rate (%)')
ax.yaxis.set_major_formatter(mticker.PercentFormatter())
ax.legend()
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_followers_by_demographics_plot(df, category_col='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value=None, plot_title="Followers by Demographics"): # plot_title is for logging/placeholder
logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=plot_title, message="No follower data available.")
required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
if type_value is None:
return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")
top_n = 10
plot_title_updated = plot_title # Use original plot_title for placeholder if needed
if len(demographics_data) > top_n:
demographics_data = demographics_data.head(top_n)
# plot_title_updated = f"{plot_title} (Top {top_n})" # No longer setting internal title
fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
bar_width = 0.35
index = np.arange(len(demographics_data.index))
bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color='skyblue')
bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color='lightcoral')
# ax.set_title(plot_title_updated, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel(category_col.replace('_', ' ').title())
ax.set_ylabel('Number of Followers')
ax.set_xticks(index)
ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
ax.legend()
ax.grid(axis='y', linestyle='--', alpha=0.7)
for bar_group in [bars1, bars2]:
for bar_item in bar_group:
yval = bar_item.get_height()
if yval > 0:
ax.text(bar_item.get_x() + bar_item.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]),
str(int(yval)), ha='center', va='bottom', fontsize=8)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.20) # Increased bottom margin for rotated labels, top for Gradio label
return fig
except Exception as e:
logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
finally:
pass
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
title = "Engagement Rate Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for engagement rate.")
required_cols = [date_column, engagement_rate_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
engagement_over_time = engagement_over_time.dropna()
if engagement_over_time.empty:
return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Engagement Rate')
max_rate_val = engagement_over_time.max() if not engagement_over_time.empty else 0
formatter_xmax = 1.0 if 0 <= max_rate_val <= 1.5 else 100.0
if max_rate_val > 1.5 and formatter_xmax == 1.0:
formatter_xmax = 100.0
elif max_rate_val > 100 and formatter_xmax == 1.0:
formatter_xmax = max_rate_val
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'):
title = "Reach Over Time (Clicks)" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for reach.")
required_cols = [date_column, reach_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")
reach_over_time = df_copy.resample('D')[reach_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Total Clicks')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
title = "Impressions Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for impressions.")
required_cols = [date_column, impressions_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")
impressions_over_time = df_copy.resample('D')[impressions_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Total Impressions')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
title = "Reactions (Likes) Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for likes.")
required_cols = [date_column, likes_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[likes_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Total Likes')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
title = "Clicks Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Clicks Col: '{clicks_col}'. DF rows: {len(df) if df is not None else 'None'}")
# This function essentially calls generate_reach_over_time_plot with specific params
# The fig.tight_layout() and fig.subplots_adjust will be handled within that function.
return generate_reach_over_time_plot(df, date_column, clicks_col)
def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
title = "Shares Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for shares.")
required_cols = [date_column, shares_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[shares_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Total Shares')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
title = "Comments Over Time" # For logging/placeholder
logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for comments.")
required_cols = [date_column, comments_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[comments_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date')
ax.set_ylabel('Total Comments')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
title = "Breakdown of Comments by Sentiment" # For logging/placeholder
logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data for comment sentiment.")
if sentiment_column not in df.columns:
if 'sentiment' in df.columns and sentiment_column != 'sentiment':
logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
sentiment_column = 'sentiment'
else:
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' (and fallback 'sentiment') not found. Available: {df.columns.tolist()}")
if df[sentiment_column].isnull().all():
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")
fig = None
try:
df_copy = df.copy()
df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
sentiment_counts = df_copy[sentiment_column].value_counts().dropna()
if sentiment_counts.empty or sentiment_counts.sum() == 0:
return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")
fig, ax = plt.subplots(figsize=(8, 5))
colors_map = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.axis('equal')
fig.tight_layout()
fig.subplots_adjust(top=0.92) # Adjusted spacing
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
title = f"Post Frequency Over Time ({resample_period})" # For logging/placeholder
logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if date_column not in df.columns:
return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")
fig = None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid date entries found.")
post_frequency = df_copy.set_index(date_column).resample(resample_period).size()
if post_frequency.empty:
return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")
fig, ax = plt.subplots(figsize=(10, 5))
post_frequency.plot(kind='bar' if resample_period in ['M', 'W'] else 'line', ax=ax, marker='o' if resample_period=='D' else None)
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.7)
plt.xticks(rotation=45)
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def generate_content_format_breakdown_plot(df, format_col='media_type'):
title = "Breakdown of Content by Format" # For logging/placeholder
logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if format_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
format_counts = df_copy[format_col].value_counts().dropna()
if format_counts.empty:
return create_placeholder_plot(title=title, message="No content format data available.")
fig, ax = plt.subplots(figsize=(8, 6))
format_counts.plot(kind='bar', ax=ax, color='skyblue')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Media Type')
ax.set_ylabel('Number of Posts')
ax.grid(axis='y', linestyle='--', alpha=0.7)
plt.xticks(rotation=45, ha="right")
for i, v in enumerate(format_counts):
ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom')
fig.tight_layout()
fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
def _parse_eb_label(label_data):
if isinstance(label_data, list):
return label_data
if isinstance(label_data, str):
try:
parsed = ast.literal_eval(label_data)
if isinstance(parsed, list):
return parsed
return [str(parsed)]
except (ValueError, SyntaxError):
return [label_data] if label_data.strip() else []
if pd.isna(label_data):
return []
return []
def generate_content_topic_breakdown_plot(df, topics_col='eb_labels', top_n=15):
title = f"Breakdown of Content by Topics (Top {top_n})" # For logging/placeholder
logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if topics_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
exploded_labels = parsed_labels.explode().dropna()
if exploded_labels.empty:
return create_placeholder_plot(title=title, message="No topic data found after processing labels.")
topic_counts = exploded_labels.value_counts()
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topics to display after counting.")
top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)
fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
top_topics.plot(kind='barh', ax=ax, color='mediumseagreen')
# ax.set_title(title, y=1.03) # Matplotlib title REMOVED
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
for i, (topic, count) in enumerate(top_topics.items()):
ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center')
fig.tight_layout()
fig.subplots_adjust(top=0.92, left=0.25) # Adjusted spacing, added left margin for long labels
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
finally:
pass
if __name__ == '__main__':
# Create dummy data for testing
posts_data = {
'id': [f'post{i}' for i in range(1, 8)],
'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03', '2023-01-04']),
'likeCount': [10, 5, 12, 8, 15, 3, 20],
'commentCount': [2, 1, 3, 1, 4, 0, 5],
'shareCount': [1, 0, 1, 1, 2, 0, 1],
'clickCount': [20, 15, 30, 22, 40, 10, 50],
'impressionCount': [200, 150, 300, 220, 400, 100, 500],
'engagement': [0.05, 0.04, 0.06, 0.055, 0.07, 0.03, 0.08],
'media_type': ['TEXT', 'IMAGE', 'TEXT', 'VIDEO', 'IMAGE', 'TEXT', 'IMAGE'],
'eb_labels': [
"['AI', 'Tech']",
['Innovation'],
'General',
None,
['Tech', 'Future'],
"['AI', 'Development']",
['Tech']
],
'comment_sentiment': ['Positive', 'Neutral', 'Positive', 'Negative', 'Positive', 'Neutral', 'Positive']
}
sample_merged_posts_df = pd.DataFrame(posts_data)
follower_data = {
'follower_count_type': [
'follower_gains_monthly', 'follower_gains_monthly', 'follower_gains_monthly',
'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', # Added more for demo
'follower_function', 'follower_function',
'follower_industry', 'follower_industry',
'follower_seniority', 'follower_seniority'
],
'category_name': [
'2024-01-01', '2024-02-01', '2024-03-01',
'Italy', 'United Kingdom', 'Spain', 'Germany', 'Switzerland', 'France', 'United States', 'Netherlands', 'Brazil', 'Belgium', # Matching screenshot
'Engineering', 'Sales',
'Tech', 'Finance',
'Senior', 'Junior'
],
'follower_count_organic': [
100, 110, 125,
4500, 187, 106, 83, 68, 63, 55, 41, 22, 22, # Matching screenshot values for organic
400, 200,
250, 180,
300, 220
],
'follower_count_paid': [
20, 30, 25,
200, 10, 5, 10, 5, 8, 2, 5, 3, 1, # Example paid values
30, 20,
45, 35,
60, 40
]
}
sample_follower_stats_df = pd.DataFrame(follower_data)
logging.info("--- Testing Existing Plot Generations ---")
fig_posts_activity = generate_posts_activity_plot(sample_merged_posts_df.copy())
if fig_posts_activity: logging.info("Posts activity plot generated.")
fig_engagement_type = generate_engagement_type_plot(sample_merged_posts_df.copy())
if fig_engagement_type: logging.info("Engagement type plot generated.")
mentions_data = {
'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
}
sample_mentions_df = pd.DataFrame(mentions_data)
fig_mentions_activity = generate_mentions_activity_plot(sample_mentions_df.copy())
if fig_mentions_activity: logging.info("Mentions activity plot generated.")
fig_mention_sentiment = generate_mention_sentiment_plot(sample_mentions_df.copy())
if fig_mention_sentiment: logging.info("Mention sentiment plot generated.")
fig_followers_count = generate_followers_count_over_time_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
if fig_followers_count: logging.info("Followers Count Over Time plot generated.")
fig_followers_rate = generate_followers_growth_rate_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
if fig_followers_rate: logging.info("Followers Growth Rate plot generated.")
fig_geo = generate_followers_by_demographics_plot(sample_follower_stats_df.copy(), type_value='follower_geo', plot_title="Followers by Location")
if fig_geo: logging.info("Followers by Location plot generated.")
# To display the plot if run locally (optional)
# if fig_geo:
# plt.show()
fig_eng_rate = generate_engagement_rate_over_time_plot(sample_merged_posts_df.copy())
if fig_eng_rate: logging.info("Engagement Rate Over Time plot generated.")
fig_reach = generate_reach_over_time_plot(sample_merged_posts_df.copy())
if fig_reach: logging.info("Reach Over Time (Clicks) plot generated.")
fig_impressions = generate_impressions_over_time_plot(sample_merged_posts_df.copy())
if fig_impressions: logging.info("Impressions Over Time plot generated.")
fig_likes_time = generate_likes_over_time_plot(sample_merged_posts_df.copy())
if fig_likes_time: logging.info("Likes Over Time plot generated.")
fig_clicks_time = generate_clicks_over_time_plot(sample_merged_posts_df.copy())
if fig_clicks_time: logging.info("Clicks Over Time plot generated.")
fig_shares_time = generate_shares_over_time_plot(sample_merged_posts_df.copy())
if fig_shares_time: logging.info("Shares Over Time plot generated.")
fig_comments_time = generate_comments_over_time_plot(sample_merged_posts_df.copy())
if fig_comments_time: logging.info("Comments Over Time plot generated.")
fig_comments_sentiment = generate_comments_sentiment_breakdown_plot(sample_merged_posts_df.copy(), sentiment_column='comment_sentiment')
if fig_comments_sentiment: logging.info("Comments Sentiment Breakdown plot generated.")
logging.info("--- Testing NEW Plot Generations for Content Strategy ---")
fig_post_freq = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='D')
if fig_post_freq: logging.info("Post Frequency (Daily) plot generated.")
fig_post_freq_w = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='W')
if fig_post_freq_w: logging.info("Post Frequency (Weekly) plot generated.")
fig_content_format = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='media_type')
if fig_content_format: logging.info("Content Format Breakdown plot generated.")
fig_content_topics = generate_content_topic_breakdown_plot(sample_merged_posts_df.copy(), topics_col='eb_labels', top_n=5)
if fig_content_topics: logging.info("Content Topic Breakdown plot generated.")
logging.info("--- Testing NEW Plot Generations with Edge Cases ---")
empty_df = pd.DataFrame()
fig_post_freq_empty = generate_post_frequency_plot(empty_df.copy())
if fig_post_freq_empty: logging.info("Post Frequency (empty df) placeholder generated.")
fig_content_format_missing_col = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='non_existent_col')
if fig_content_format_missing_col: logging.info("Content Format (missing col) placeholder generated.")
fig_content_topics_no_labels = generate_content_topic_breakdown_plot(sample_merged_posts_df[['id', 'published_at']].copy(), topics_col='eb_labels')
if fig_content_topics_no_labels: logging.info("Content Topic (missing col) placeholder generated.")
df_no_topics_data = sample_merged_posts_df.copy()
df_no_topics_data['eb_labels'] = None
fig_content_topics_all_none = generate_content_topic_breakdown_plot(df_no_topics_data, topics_col='eb_labels')
if fig_content_topics_all_none: logging.info("Content Topic (all None labels) placeholder generated.")
logging.info("Test script finished. Review plots if displayed locally or saved.")
|