File size: 54,195 Bytes
f20ee95
 
 
 
 
 
8019346
bc9de29
617c2c1
37c2a7c
 
 
 
f20ee95
 
 
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ee95
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f147c5
f20ee95
8019346
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ee95
7f147c5
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d342a
 
 
 
 
 
 
 
 
bc9de29
 
 
 
 
 
 
 
 
b7a0e8c
7f147c5
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d342a
 
bc9de29
 
 
 
 
 
 
 
 
8019346
7f147c5
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d342a
 
bc9de29
 
 
 
 
 
 
 
 
8019346
7f147c5
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d342a
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
7f147c5
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8019346
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20ee95
adab1ec
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adab1ec
 
bc9de29
 
adab1ec
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adab1ec
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adab1ec
617c2c1
bc9de29
 
 
 
 
 
08d342a
bc9de29
08d342a
 
 
 
 
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d342a
 
 
 
 
 
 
 
bc9de29
 
 
 
 
 
 
 
617c2c1
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
4309c1f
bc9de29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617c2c1
 
bc9de29
 
617c2c1
bc9de29
617c2c1
bc9de29
 
617c2c1
bc9de29
7f147c5
bc9de29
 
 
 
 
617c2c1
bc9de29
 
 
7f147c5
bc9de29
 
7f147c5
bc9de29
 
 
 
 
 
 
 
48a048c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import matplotlib.patches as patches # Added for rounded corners
import ast # For safely evaluating string representations of lists
from analytics_data_processing import (
    generate_chatbot_data_summaries,
    prepare_filtered_analytics_data
)

# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')

# Helper function to clean non-printable characters from the entire file content if needed
# For now, I will manually ensure the code below is clean.
# If the error persists, you might need a script to clean the .py file itself.

def _apply_rounded_corners_and_transparent_bg(fig, ax):
    """Helper to apply rounded corners to axes and transparent background."""
    fig.patch.set_alpha(0.0)  # Make figure background transparent
    ax.patch.set_alpha(0.0)   # Make default axes background transparent

    # Turn off original spines, as we'll draw a new background
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)

    # Add a new rounded background for the axes
    # Using FancyBboxPatch to create a rounded rectangle background for the plot area
    # Coordinates are relative to axes (0,0 is bottom-left, 1,1 is top-right)
    rounded_rect_bg = patches.FancyBboxPatch(
        (0, 0),  # (x,y) position of the bounding box
        1,       # width of the bounding box
        1,       # height of the bounding box
        boxstyle="round,pad=0,rounding_size=0.015",  # Style: round, no padding, size of rounding
        transform=ax.transAxes,       # Coordinates are relative to the axes
        facecolor='whitesmoke',       # Background color of the rounded area
        edgecolor='lightgray',        # Border color for the rounded area
        linewidth=0.5,                # Border line width
        zorder=-1                     # Put it behind other plot elements like gridlines and data
    )
    ax.add_patch(rounded_rect_bg)
    
    # Ensure grid is drawn on top of the new background if used
    if ax.axison and any(line.get_visible() for line in ax.get_xgridlines() + ax.get_ygridlines()):
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0) # Redraw grid with zorder

def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
    """Creates a placeholder Matplotlib plot indicating no data or an error."""
    try:
        fig, ax = plt.subplots(figsize=(8, 4))
        _apply_rounded_corners_and_transparent_bg(fig, ax) # Apply rounded corners and transparent BG

        ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True, zorder=1)
        ax.axis('off') # Turn off axis for placeholder text display
        # No tight_layout here as it might interfere with the manual patch for background
        fig.subplots_adjust(top=0.90, bottom=0.10, left=0.10, right=0.90) # General padding
        return fig
    except Exception as e:
        logging.error(f"Error creating placeholder plot: {e}")
        # Fallback placeholder if the above fails (less styling)
        fig_err, ax_err = plt.subplots(figsize=(8,4))
        fig_err.patch.set_alpha(0.0)
        ax_err.patch.set_alpha(0.0)
        ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center', zorder=1)
        ax_err.axis('off')
        return fig_err

def generate_posts_activity_plot(df, date_column='published_at'):
    """Generates a plot for posts activity over time."""
    logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Posts activity: DataFrame is empty.")
        return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")

    fig = None 
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')

        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")

        posts_over_time = df_copy.set_index(date_column).resample('D').size()

        if posts_over_time.empty:
            logging.info("Posts activity: No posts after resampling by day.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)

        posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0) # Ensure grid is behind plot line
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5) # Add some padding
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) # Adjusted spacing
        logging.info("Successfully generated posts activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
        if fig: plt.close(fig) 
        return create_placeholder_plot(title="Posts Activity Error", message=str(e))


def generate_mentions_activity_plot(df, date_column='date'):
    """Generates a plot for mentions activity over time."""
    logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Mentions activity: DataFrame is empty.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")

    fig = None
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')

        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")

        mentions_over_time = df_copy.set_index(date_column).resample('D').size()

        if mentions_over_time.empty:
            logging.info("Mentions activity: No mentions after resampling by day.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Mentions')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) # Adjusted spacing
        logging.info("Successfully generated mentions activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title="Mentions Activity Error", message=str(e))

def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
    """Generates a pie chart for mention sentiment distribution."""
    logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        logging.warning("Mention sentiment: DataFrame is empty.")
        return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
    if sentiment_column not in df.columns:
        msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
        logging.warning(msg)
        return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)

    fig = None
    try:
        df_copy = df.copy()
        sentiment_counts = df_copy[sentiment_column].value_counts()
        if sentiment_counts.empty:
            logging.info("Mention sentiment: No sentiment data after value_counts.")
            return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")

        fig, ax = plt.subplots(figsize=(8, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax) # Apply before plotting pie
        
        # Define a list of distinct colors for the pie slices
        pie_slice_colors = plt.cm.get_cmap('Pastel2', len(sentiment_counts))
        
        # Removed zorder from ax.pie
        wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, 
                                          colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
        # Set zorder for pie elements if needed, though usually not necessary as they draw on top of the background patch
        for wedge in wedges:
            wedge.set_zorder(1)
        for text_item in texts + autotexts:
            text_item.set_zorder(2)

        ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
        # fig.tight_layout(pad=0.5) # tight_layout can sometimes mess with pie charts if labels are long
        fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95) # Give pie chart space
        logging.info("Successfully generated mention sentiment plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))

def generate_followers_count_over_time_plot(df, date_info_column='category_name',
                                            organic_count_col='follower_count_organic',
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type',
                                            type_value='follower_gains_monthly'):
    title = f"Followers Count Over Time ({type_value})" 
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")

    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")

        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers', zorder=1)
        ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Follower Count')
        legend = ax.legend() # Removed zorder from legend call
        if legend: legend.set_zorder(2) # Set zorder on the legend object itself
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_followers_growth_rate_plot(df, date_info_column='category_name',
                                        organic_count_col='follower_count_organic',
                                        paid_count_col='follower_count_paid',
                                        type_filter_column='follower_count_type',
                                        type_value='follower_gains_monthly'):
    title = f"Follower Growth Rate ({type_value})"
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")

    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()

        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")

        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
        df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')

        if df_filtered.empty or len(df_filtered) < 2:
            return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")

        df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
        df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
        df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        plotted_organic = False
        if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate', zorder=1)
            plotted_organic = True
        plotted_paid = False
        if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate', zorder=1)
            plotted_paid = True

        if not plotted_organic and not plotted_paid:
            return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")

        ax.set_xlabel('Date')
        ax.set_ylabel('Growth Rate (%)')
        ax.yaxis.set_major_formatter(mticker.PercentFormatter())
        legend = ax.legend() # Removed zorder from legend call
        if legend: legend.set_zorder(2) # Set zorder on the legend object itself
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_followers_by_demographics_plot(df, category_col='category_name',
                                            organic_count_col='follower_count_organic',
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type',
                                            type_value=None, plot_title="Followers by Demographics"): 
    logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=plot_title, message="No follower data available.")

    required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    if type_value is None:
        return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")

    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()

        if df_filtered.empty:
            return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")

        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
        demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
        demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])

        if demographics_data.empty:
            return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")

        top_n = 10
        if len(demographics_data) > top_n:
            demographics_data = demographics_data.head(top_n)

        fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        bar_width = 0.35
        index = np.arange(len(demographics_data.index))
        
        color_organic = plt.cm.get_cmap('tab10')(0) 
        color_paid = plt.cm.get_cmap('tab10')(1)

        bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color=color_organic, zorder=1)
        bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color=color_paid, zorder=1)

        ax.set_xlabel(category_col.replace('_', ' ').title())
        ax.set_ylabel('Number of Followers')
        ax.set_xticks(index)
        ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
        legend = ax.legend() # Removed zorder from legend call
        if legend: legend.set_zorder(2) # Set zorder on the legend object itself
        ax.grid(axis='y', linestyle='--', alpha=0.6, zorder=0)

        for bar_group in [bars1, bars2]:
            for bar_item in bar_group: 
                yval = bar_item.get_height()
                if yval > 0:
                    ax.text(bar_item.get_x() + bar_item.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]),
                            str(int(yval)), ha='center', va='bottom', fontsize=8, zorder=2)

        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.25, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))

def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
    title = "Engagement Rate Over Time" 
    logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for engagement rate.")

    required_cols = [date_column, engagement_rate_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)

        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
        engagement_over_time = engagement_over_time.dropna()

        if engagement_over_time.empty:
            return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Engagement Rate')
        max_rate_val = engagement_over_time.max() if not engagement_over_time.empty else 0
        formatter_xmax = 1.0 if 0 <= max_rate_val <= 1.5 else 100.0
        if max_rate_val > 1.5 and formatter_xmax == 1.0:
            formatter_xmax = 100.0
        elif max_rate_val > 100 and formatter_xmax == 1.0:
            formatter_xmax = max_rate_val

        ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'):
    title = "Reach Over Time (Clicks)" 
    logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for reach.")

    required_cols = [date_column, reach_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)

        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")

        reach_over_time = df_copy.resample('D')[reach_col].sum()

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Clicks') 
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
    title = "Impressions Over Time" 
    logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for impressions.")

    required_cols = [date_column, impressions_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)

        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")

        impressions_over_time = df_copy.resample('D')[impressions_col].sum()

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Impressions')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
    title = "Reactions (Likes) Over Time" 
    logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for likes.")
    required_cols = [date_column, likes_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        data_over_time = df_copy.resample('D')[likes_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Likes')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
    # This function reuses generate_reach_over_time_plot logic
    return generate_reach_over_time_plot(df, date_column, clicks_col)

def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
    title = "Shares Over Time" 
    logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for shares.")
    required_cols = [date_column, shares_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        data_over_time = df_copy.resample('D')[shares_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Shares')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
    title = "Comments Over Time" 
    logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for comments.")
    required_cols = [date_column, comments_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")

        data_over_time = df_copy.resample('D')[comments_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold', zorder=1)
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Comments')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
    title = "Breakdown of Comments by Sentiment" 
    logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data for comment sentiment.")
    if sentiment_column not in df.columns:
        if 'sentiment' in df.columns and sentiment_column != 'sentiment': # Check for a common alternative name
            logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
            sentiment_column = 'sentiment' 
            if sentiment_column not in df.columns: # If fallback also not found
                 return create_placeholder_plot(title=title, message=f"Fallback sentiment column 'sentiment' also not found. Available: {df.columns.tolist()}")
        else: # If original and 'sentiment' fallback are not found
            return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' not found. Available: {df.columns.tolist()}")


    if df[sentiment_column].isnull().all():
        return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")

    fig = None
    try:
        df_copy = df.copy()
        df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
        sentiment_counts = df_copy[sentiment_column].value_counts().dropna()

        if sentiment_counts.empty or sentiment_counts.sum() == 0:
            return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")

        fig, ax = plt.subplots(figsize=(8, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        pie_slice_colors = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
        # Removed zorder from ax.pie
        wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, 
                                          colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
        for wedge in wedges:
            wedge.set_zorder(1)
        for text_item in texts + autotexts:
            text_item.set_zorder(2)
            
        ax.axis('equal') 
        # fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
    title = f"Post Frequency Over Time ({resample_period})" 
    logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if date_column not in df.columns:
        return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")

    fig = None
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')

        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid date entries found.")

        post_frequency = df_copy.set_index(date_column).resample(resample_period).size()

        if post_frequency.empty:
            return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")

        fig, ax = plt.subplots(figsize=(10, 5))
        _apply_rounded_corners_and_transparent_bg(fig, ax)

        if resample_period in ['M', 'W']:
            num_bars = len(post_frequency)
            bar_colors = plt.cm.get_cmap('viridis', num_bars) # Or 'tab10'
            post_frequency.plot(kind='bar', ax=ax, color=[bar_colors(i) for i in range(num_bars)], zorder=1)
            for i, v in enumerate(post_frequency):
                ax.text(i, v + (0.01 * post_frequency.max()), str(v), ha='center', va='bottom', zorder=2)
        else:
            post_frequency.plot(kind='line', ax=ax, marker='o', zorder=1)
        
        ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45)
        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) 
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def generate_content_format_breakdown_plot(df, format_col='media_type'):
    title = "Breakdown of Content by Format" 
    logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if format_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        format_counts = df_copy[format_col].value_counts().dropna()

        if format_counts.empty:
            return create_placeholder_plot(title=title, message="No content format data available.")

        fig, ax = plt.subplots(figsize=(8, 6))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        num_bars = len(format_counts)
        bar_colors = plt.cm.get_cmap('tab10', num_bars) # Using tab10 for distinct colors

        format_counts.plot(kind='bar', ax=ax, color=[bar_colors(i) for i in range(num_bars)], zorder=1)
        ax.set_xlabel('Media Type')
        ax.set_ylabel('Number of Posts')
        ax.grid(axis='y', linestyle='--', alpha=0.6, zorder=0)
        plt.xticks(rotation=45, ha="right")

        for i, v in enumerate(format_counts):
            ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom', zorder=2)

        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.20, left=0.15, right=0.95) 
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))

def _parse_eb_label(label_data):
    if isinstance(label_data, list):
        return label_data
    if isinstance(label_data, str):
        try:
            parsed = ast.literal_eval(label_data)
            if isinstance(parsed, list):
                return parsed
            return [str(parsed)] # Ensure it's a list even if ast.literal_eval returns a single string
        except (ValueError, SyntaxError):
             # If not a valid list string, treat the whole string as one label if not empty
            return [label_data.strip()] if label_data and label_data.strip() else []
    if pd.isna(label_data):
        return []
    return [str(label_data)] # Fallback for other types, ensuring it's a list

def generate_content_topic_breakdown_plot(df, topics_col='li_eb_labels', top_n=15):
    title = f"Breakdown of Content by Topics (Top {top_n})" 
    logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")

    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if topics_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")

    fig = None
    try:
        df_copy = df.copy()
        # Ensure all entries in topics_col are processed by _parse_eb_label
        parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
        exploded_labels = parsed_labels.explode().dropna() # Explode lists into separate rows

        # Filter out any empty strings that might result from parsing
        exploded_labels = exploded_labels[exploded_labels != '']


        if exploded_labels.empty:
            return create_placeholder_plot(title=title, message="No topic data found after processing labels.")

        topic_counts = exploded_labels.value_counts()

        if topic_counts.empty:
            return create_placeholder_plot(title=title, message="No topics to display after counting.")

        top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)

        fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
        _apply_rounded_corners_and_transparent_bg(fig, ax)
        
        num_bars = len(top_topics)
        bar_colors = plt.cm.get_cmap('YlGnBu', num_bars + 3) # Using a sequential colormap for horizontal bars

        top_topics.plot(kind='barh', ax=ax, color=[bar_colors(i+3) for i in range(num_bars)], zorder=1) # +3 to get darker shades
        ax.set_xlabel('Number of Posts')
        ax.set_ylabel('Topic')

        for i, (topic, count) in enumerate(top_topics.items()): # Use .items() for Series
            ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center', zorder=2)

        fig.tight_layout(pad=0.5)
        fig.subplots_adjust(top=0.92, bottom=0.1, left=0.3, right=0.95) # Adjusted left for long topic labels
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))


# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
    logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
    num_expected_plots = 19 # Ensure this matches the number of plots generated
    
    plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries

    if not token_state_value or not token_state_value.get("token"):
        message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
        logging.warning(message)
        placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
        # For each plot_config, add a default "no data" summary
        for p_cfg in current_plot_configs:
            plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot."
        return [message] + placeholder_figs + [plot_data_summaries_for_chatbot]
    try:
        (filtered_merged_posts_df, 
         filtered_mentions_df, 
         date_filtered_follower_stats_df, # For time-based follower plots
         raw_follower_stats_df,       # For demographic follower plots
         start_dt_for_msg, end_dt_for_msg) = \
            prepare_filtered_analytics_data(
                token_state_value, date_filter_option, custom_start_date, custom_end_date
            )
        
        # Generate data summaries for chatbot AFTER data preparation
        plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
            current_plot_configs, # Pass the plot_configs list
            filtered_merged_posts_df,
            filtered_mentions_df,
            date_filtered_follower_stats_df,
            raw_follower_stats_df,
            token_state_value
        )

    except Exception as e:
        error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
        logging.error(error_msg, exc_info=True)
        placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
        for p_cfg in current_plot_configs:
            plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}"
        return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot]
    
    date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
    date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
    media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
    eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
    
    plot_figs = [] # Initialize list to hold plot figures
    
    plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs] 

    try:
        # Dinamiche dei Follower (2 plots)
        plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
        plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate
        
        # Demografia Follower (4 plots)
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
        plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))

        # Approfondimenti Performance Post (4 plots)
        plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func
        plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        
        # Engagement Dettagliato Post nel Tempo (4 plots)
        plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists
        
        # Analisi Strategia Contenuti (3 plots)
        plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
        plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
        plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
        
        # Analisi Menzioni (Dettaglio) (2 plots)
        plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions))
        plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df

        if len(plot_figs) != num_expected_plots:
            logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.")
            while len(plot_figs) < num_expected_plots:
                plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta."))
        
        message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
        if date_filter_option == "Intervallo Personalizzato": 
            s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
            e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
            message += f" (Da: {s_display} A: {e_display})"
        
        final_plot_figs = []
        for i, p_fig_candidate in enumerate(plot_figs):
            if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object
                final_plot_figs.append(p_fig_candidate)
            else:
                err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
                logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.")
                final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura."))
        
        return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]

    except (KeyError, ValueError) as e_plot_data:
        logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True)
        error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}"
        
        num_already_generated = len(plot_figs)
        for i in range(num_already_generated, num_expected_plots):
            err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
            plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}"))
        
        for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
            if p_cfg["id"] not in plot_data_summaries_for_chatbot:
                 plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}"
        return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]

    except Exception as e_general:
        error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}"
        logging.error(error_msg, exc_info=True)
        placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)]
        for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
             if p_cfg["id"] not in plot_data_summaries_for_chatbot:
                 plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}"
        return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot]