Spaces:
Running
Running
# eb_agent_module.py | |
import pandas as pd | |
import json | |
import os | |
import asyncio | |
import logging | |
import numpy as np | |
import textwrap | |
# --- Define Dummy Classes with unique names first --- | |
class _DummyGenAIClientModels: # Represents the dummy model service client | |
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None): | |
print(f"Dummy _DummyGenAI.Client.models.generate_content_async called for model: {model}") | |
class DummyPart: text = "# Dummy response from _DummyGenAI async" | |
class DummyContent: parts = [DummyPart()] | |
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0 | |
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None | |
return DummyResponse() | |
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None): | |
print(f"Dummy _DummyGenAI.Client.models.generate_content called for model: {model}") | |
class DummyPart: text = "# Dummy response from _DummyGenAI sync" | |
class DummyContent: parts = [DummyPart()] | |
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0 | |
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None | |
return DummyResponse() | |
def embed_content(self, model=None, contents=None, config=None): # Added dummy embed_content | |
print(f"Dummy _DummyGenAI.Client.models.embed_content called for model: {model}, task_type (from config): {config.get('task_type') if isinstance(config, dict) else 'N/A'}") | |
return {"embedding": [0.2] * 768} # Different values for dummy distinction | |
class _DummyGenAIClient: # Dummy Client | |
def __init__(self, client_options=None): # Added client_options for signature consistency | |
self.client_options = client_options | |
self.models = _DummyGenAIClientModels() | |
api_key_present_in_options = client_options and client_options.get("api_key") | |
print(f"Dummy _DummyGenAI.Client initialized {'with api_key in client_options' if api_key_present_in_options else '(global API key expected by dummy)'}.") | |
class _DummyGenAIGenerativeModel: # This dummy might be less used if client.models is preferred | |
def __init__(self, model_name_in, generation_config=None, safety_settings=None, system_instruction=None): | |
self.model_name = model_name_in | |
print(f"Dummy _DummyGenAIGenerativeModel initialized for {model_name_in}") | |
async def generate_content_async(self, contents, stream=False): | |
print(f"Dummy _DummyGenAIGenerativeModel.generate_content_async called for {self.model_name}") | |
class DummyPart: text = f"# Dummy response from dummy _DummyGenAIGenerativeModel ({self.model_name})" | |
class DummyContent: parts = [DummyPart()] | |
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = [] | |
class DummyResponse: candidates = [DummyCandidate()]; prompt_feedback = None; text = DummyCandidate.content.parts[0].text | |
return DummyResponse() | |
# This embed_content on the dummy GenerativeModel might not be used if AdvancedRAGSystem uses client.models.embed_content | |
def embed_content(self, content, task_type=None, title=None): | |
print(f"Dummy _DummyGenAIGenerativeModel.embed_content called for model {self.model_name} (task: {task_type})") | |
return {"embedding": [0.1] * 768} | |
class _ActualDummyGenAI: # type: ignore | |
Client = _DummyGenAIClient | |
def configure(api_key): | |
print(f"Dummy _ActualDummyGenAI.configure called with API key: {'SET' if api_key else 'NOT SET'}") | |
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None): | |
print(f"Dummy _ActualDummyGenAI.GenerativeModel called for model: {model_name}") | |
return _DummyGenAIGenerativeModel(model_name, generation_config, safety_settings, system_instruction) | |
class types: | |
def GenerationConfig(**kwargs): | |
print(f"Dummy _ActualDummyGenAI.types.GenerationConfig created with: {kwargs}") | |
return dict(kwargs) | |
def SafetySetting(category, threshold): | |
print(f"Dummy _ActualDummyGenAI.types.SafetySetting created: category={category}, threshold={threshold}") | |
return {"category": category, "threshold": threshold} | |
# Added dummy EmbedContentConfig | |
def EmbedContentConfig(task_type=None, output_dimensionality=None, title=None): | |
print(f"Dummy _ActualDummyGenAI.types.EmbedContentConfig created with task_type: {task_type}") | |
conf = {} | |
if task_type: conf["task_type"] = task_type | |
if output_dimensionality: conf["output_dimensionality"] = output_dimensionality | |
if title: conf["title"] = title # Though title is usually direct param for embed_content | |
return conf | |
class HarmCategory: HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT" | |
class HarmBlockThreshold: BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH" | |
class FinishReason: FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER" | |
class BlockedReason: BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"; SAFETY = "SAFETY"; OTHER = "OTHER" | |
class BlockedPromptException(Exception): pass | |
class StopCandidateException(Exception): pass | |
# --- Attempt to import the real library --- | |
_REAL_GENAI_LOADED = False | |
genai_types = None | |
try: | |
from google import genai | |
genai_types = genai.types | |
_REAL_GENAI_LOADED = True | |
logging.info("Successfully imported 'google.genai' and accessed 'genai.types'.") | |
except ImportError: | |
genai = _ActualDummyGenAI() | |
genai_types = genai.types | |
logging.warning("Google AI library ('google.genai') not found. Using dummy implementations for 'genai' and 'genai_types'.") | |
except AttributeError: # If 'genai' imported but 'genai.types' is missing | |
genai = _ActualDummyGenAI() | |
genai_types = genai.types # Fallback to dummy types | |
_REAL_GENAI_LOADED = False | |
logging.warning("'google.genai' imported, but 'genai.types' not found. Falling back to dummy implementations.") | |
# --- Configuration --- | |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "") | |
LLM_MODEL_NAME = "gemini-2.0-flash" | |
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07" | |
GENERATION_CONFIG_PARAMS = { | |
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192, | |
} | |
try: | |
DEFAULT_SAFETY_SETTINGS = [ | |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE), | |
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE), | |
# ... other settings | |
] | |
except Exception as e_safety: | |
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using 'genai_types' (real_loaded: {_REAL_GENAI_LOADED}): {e_safety}. Using placeholder list of dicts.") | |
DEFAULT_SAFETY_SETTINGS = [{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}] # Simplified | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s') | |
if _REAL_GENAI_LOADED: | |
if GEMINI_API_KEY: | |
try: | |
genai.configure(api_key=GEMINI_API_KEY) | |
logging.info(f"Gemini API key configured globally using REAL genai.configure.") | |
except Exception as e: | |
logging.error(f"Failed to configure REAL Gemini API globally: {e}", exc_info=True) | |
else: | |
logging.warning("REAL 'google.genai' loaded, but GEMINI_API_KEY not set. API calls might fail or use other auth.") | |
elif not _REAL_GENAI_LOADED: | |
logging.info("Operating in DUMMY mode for 'google.genai'.") | |
if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) | |
# --- RAG Documents Definition (Example) --- | |
rag_documents_data = { 'Title': ["EB Practices", "Tech Talent"], 'Text': ["Stories...", "Projects..."] } | |
df_rag_documents = pd.DataFrame(rag_documents_data) | |
# --- Schema Representation --- | |
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str: | |
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n" | |
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n" | |
return f"DataFrame 'df_{df_name}': Cols: {df.columns.tolist()}, Shape: {df.shape}\nSample:\n{textwrap.indent(df.head(1).to_string(), ' ')}\n" | |
def get_all_schemas_representation(dataframes_dict: dict) -> str: | |
if not dataframes_dict: return "No DataFrames provided.\n" | |
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items()) | |
# --- Advanced RAG System --- | |
class AdvancedRAGSystem: | |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str): | |
self.embedding_model_name_for_api = embedding_model_name # Store raw name | |
if not self.embedding_model_name_for_api.startswith("models/"): | |
self.embedding_model_name_for_api = f"models/{self.embedding_model_name_for_api}" | |
self.documents_df = documents_df.copy() | |
self.embeddings_generated = False | |
self.embedding_service = None # Will hold client.models or its dummy equivalent | |
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY) | |
if self.real_client_available_for_rag: | |
try: | |
# Pass client_options if API key is available, to help Client find it | |
client_opts = {"api_key": GEMINI_API_KEY} if GEMINI_API_KEY else None | |
rag_client = genai.Client(client_options=client_opts) | |
self.embedding_service = rag_client.models | |
logging.info(f"RAG: REAL embedding service (genai.Client.models) initialized for '{self.embedding_model_name_for_api}'.") | |
self._precompute_embeddings() | |
self.embeddings_generated = True | |
except Exception as e: | |
logging.error(f"RAG: Error initializing REAL embedding service: {e}", exc_info=True) | |
self.embedding_service = None | |
else: | |
logging.warning(f"RAG: Not using REAL embedding service. Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}.") | |
if not _REAL_GENAI_LOADED: # Full dummy mode | |
self.embedding_service = genai.Client().models # genai is _ActualDummyGenAI, gets dummy service | |
self._precompute_embeddings() | |
def _embed_fn(self, contents_to_embed: str, task_type: str) -> list[float]: | |
if not self.embedding_service: | |
logging.error(f"RAG _embed_fn: Embedding service not available for model '{self.embedding_model_name_for_api}'.") | |
return [0.0] * 768 | |
try: | |
if not contents_to_embed: return [0.0] * 768 | |
# Use genai_types (which is real or dummy) to create EmbedContentConfig | |
embed_config = genai_types.EmbedContentConfig(task_type=task_type) | |
# Call embed_content on the service (real or dummy) | |
response = self.embedding_service.embed_content( | |
model=self.embedding_model_name_for_api, | |
contents=contents_to_embed, | |
config=embed_config | |
) | |
return response["embedding"] | |
except Exception as e: | |
logging.error(f"Error in _embed_fn for task '{task_type}' using model '{self.embedding_model_name_for_api}' (real_genai_loaded: {_REAL_GENAI_LOADED}): {e}", exc_info=True) | |
return [0.0] * 768 | |
def _precompute_embeddings(self): | |
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object') | |
mask = (self.documents_df['Text'].notna() & (self.documents_df['Text'] != '')) | (self.documents_df['Title'].notna() & (self.documents_df['Title'] != '')) | |
if not mask.any(): logging.warning("No content for RAG embeddings."); return | |
for index, row in self.documents_df[mask].iterrows(): | |
text_to_embed = row.get('Text', '') if row.get('Text', '') else row.get('Title', '') | |
self.documents_df.loc[index, 'Embeddings'] = self._embed_fn(text_to_embed, task_type="RETRIEVAL_DOCUMENT") # Corrected task type string | |
logging.info(f"Applied RAG embedding function to {mask.sum()} rows (embedding_service active: {self.embedding_service is not None}).") | |
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str: | |
if not self.real_client_available_for_rag or not self.embedding_service: | |
if not _REAL_GENAI_LOADED and self.embedding_service: # Full dummy mode | |
self._embed_fn(query_text, task_type="RETRIEVAL_QUERY") # Call for dummy log | |
logging.warning(f"Skipping real RAG retrieval. Real client available: {self.real_client_available_for_rag}, Embedding service OK: {self.embedding_service is not None}") | |
return "\n[RAG Context]\nReal RAG retrieval skipped.\n" | |
try: | |
query_embedding = np.array(self._embed_fn(query_text, task_type="RETRIEVAL_QUERY")) # Corrected task type string | |
valid_df = self.documents_df.dropna(subset=['Embeddings']) | |
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))] | |
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings after filtering.\n" | |
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values) | |
if query_embedding.shape[0] != doc_embeddings.shape[1]: return "\n[RAG Context]\nEmbedding dimension mismatch.\n" | |
dot_products = np.dot(doc_embeddings, query_embedding) | |
num_to_retrieve = min(top_k, len(valid_df)) | |
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n" | |
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1] | |
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)]) | |
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n" | |
except Exception as e: | |
logging.error(f"Error in RAG retrieve_relevant_info (real mode with embedding service): {e}", exc_info=True) | |
return f"\n[RAG Context]\nError during RAG retrieval (real mode): {type(e).__name__} - {e}\n" | |
# --- PandasLLM Class (Gemini-Powered using genai.Client) --- | |
class PandasLLM: | |
def __init__(self, llm_model_name: str, | |
generation_config_dict: dict, | |
safety_settings_list: list, | |
data_privacy=True, force_sandbox=True): | |
self.llm_model_name = llm_model_name | |
self.generation_config_dict = generation_config_dict | |
self.safety_settings_list = safety_settings_list | |
self.data_privacy = data_privacy | |
self.force_sandbox = force_sandbox | |
self.client = None | |
self.model_service = None | |
if _REAL_GENAI_LOADED and GEMINI_API_KEY: | |
try: | |
# genai.configure should have been called. Try passing client_options as a fallback. | |
client_opts = {"api_key": GEMINI_API_KEY} if GEMINI_API_KEY else None | |
self.client = genai.Client(client_options=client_opts) | |
self.model_service = self.client.models | |
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.") | |
except Exception as e: | |
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client: {e}", exc_info=True) | |
self.client = None | |
self.model_service = None | |
else: | |
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}.") | |
if not _REAL_GENAI_LOADED: | |
self.client = genai.Client() | |
self.model_service = self.client.models | |
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models (real library failed to load).") | |
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str: | |
use_real_service = _REAL_GENAI_LOADED and GEMINI_API_KEY and self.model_service is not None | |
active_model_service = self.model_service | |
if not use_real_service and not _REAL_GENAI_LOADED: | |
if active_model_service is None: | |
logging.debug("PandasLLM._call_gemini_api_async: active_model_service is None in dummy mode, using global dummy genai.Client().models.") | |
active_model_service = genai.Client().models | |
if not active_model_service: | |
logging.error(f"PandasLLM: Model service not available (use_real_service: {use_real_service}, _REAL_GENAI_LOADED: {_REAL_GENAI_LOADED}, self.model_service is None: {self.model_service is None}). Cannot call API.") | |
return "# Error: Gemini model service not available for API call." | |
gemini_history = [] | |
if history: | |
for entry in history: | |
role_for_api = "model" if entry.get("role") == "assistant" else entry.get("role", "user") | |
text_content = entry.get("content", "") | |
gemini_history.append({"role": role_for_api, "parts": [{"text": text_content}]}) | |
current_prompt_content = [{"role": "user", "parts": [{"text": prompt_text}]}] | |
contents_for_api = gemini_history + current_prompt_content | |
model_id_for_api = self.llm_model_name | |
if not model_id_for_api.startswith("models/"): | |
model_id_for_api = f"models/{model_id_for_api}" | |
api_generation_config = None | |
if self.generation_config_dict: | |
try: | |
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict) | |
except Exception as e_cfg: | |
logging.error(f"Error creating GenerationConfig (real_loaded: {_REAL_GENAI_LOADED}): {e_cfg}. Using dict fallback.") | |
api_generation_config = self.generation_config_dict | |
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealMode: {use_real_service}) ---\nConfig: {api_generation_config}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n") | |
try: | |
response = await active_model_service.generate_content_async( | |
model=model_id_for_api, | |
contents=contents_for_api, | |
generation_config=api_generation_config, | |
safety_settings=self.safety_settings_list | |
) | |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \ | |
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason: | |
block_reason_val = response.prompt_feedback.block_reason | |
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') else block_reason_val) | |
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.") | |
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}." | |
llm_output = "" | |
if hasattr(response, 'text') and isinstance(response.text, str): | |
llm_output = response.text | |
elif response.candidates: | |
candidate = response.candidates[0] | |
if candidate.content and candidate.content.parts: | |
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text')) | |
if not llm_output and candidate.finish_reason: | |
finish_reason_val = candidate.finish_reason | |
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val) | |
if finish_reason_str == "SAFETY": | |
safety_messages = [] | |
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings: | |
for rating in candidate.safety_ratings: | |
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category) | |
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability) | |
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}") | |
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}") | |
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}" | |
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.") | |
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}." | |
else: | |
logging.error(f"Unexpected API response structure: {str(response)[:500]}") | |
return f"# Error: Unexpected API response structure: {str(response)[:200]}" | |
return llm_output | |
except (genai_types.BlockedPromptException if _REAL_GENAI_LOADED and hasattr(genai_types, 'BlockedPromptException') else Exception) as bpe: | |
if _REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException': | |
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True) | |
return f"# Error: Prompt blocked. Details: {bpe}" | |
if not (_REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException'): raise | |
except (genai_types.StopCandidateException if _REAL_GENAI_LOADED and hasattr(genai_types, 'StopCandidateException') else Exception) as sce: | |
if _REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException': | |
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True) | |
return f"# Error: Content generation stopped. Details: {sce}" | |
if not (_REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException'): raise | |
except Exception as e: | |
logging.error(f"Error calling Gemini API (RealMode: {use_real_service}): {e}", exc_info=True) | |
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}." | |
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str: | |
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history) | |
if self.force_sandbox: | |
code_to_execute = "" | |
if "```python" in llm_response_text: | |
try: | |
code_block_match = llm_response_text.split("```python\n", 1) | |
if len(code_block_match) > 1: code_to_execute = code_block_match[1].split("\n```", 1)[0] | |
else: | |
code_block_match = llm_response_text.split("```python", 1) | |
if len(code_block_match) > 1: | |
code_to_execute = code_block_match[1].split("```", 1)[0] | |
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:] | |
except IndexError: code_to_execute = "" | |
if llm_response_text.startswith("# Error:") or not code_to_execute.strip(): | |
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}") | |
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"): | |
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0: | |
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}") | |
return llm_response_text | |
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n") | |
from io import StringIO; import sys | |
old_stdout, sys.stdout = sys.stdout, StringIO() | |
exec_globals = {'pd': pd, 'np': np} | |
if dataframes_dict: | |
for name, df_instance in dataframes_dict.items(): | |
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance | |
try: | |
exec(code_to_execute, exec_globals, {}) | |
final_output_str = sys.stdout.getvalue() | |
if not final_output_str.strip(): | |
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()): | |
return "# LLM generated only comments or empty code. No output by sandbox." | |
return "# Code executed by sandbox, but no print() output. Ensure print() for results." | |
return final_output_str | |
except Exception as e: | |
logging.error(f"Sandbox Execution Error: {e}\nCode:\n{code_to_execute}", exc_info=True) | |
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{textwrap.indent(code_to_execute, '# ')}" | |
finally: sys.stdout = old_stdout | |
else: return llm_response_text | |
# --- Employer Branding Agent --- | |
class EmployerBrandingAgent: | |
def __init__(self, llm_model_name: str, gc_dict: dict, ss_list: list, all_dfs: dict, rag_df: pd.DataFrame, emb_m_name: str, dp=True, fs=True): | |
self.pandas_llm = PandasLLM(llm_model_name, gc_dict, ss_list, dp, fs) | |
self.rag_system = AdvancedRAGSystem(rag_df, emb_m_name) | |
self.all_dataframes = all_dfs if all_dfs else {} | |
self.schemas_representation = get_all_schemas_representation(self.all_dataframes) | |
self.chat_history = [] | |
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}).") | |
def _build_prompt(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: | |
prompt = f"You are '{role}'. Goal: insights from DataFrames & RAG.\n" | |
if self.pandas_llm.data_privacy: prompt += "PRIVACY: Summarize/aggregate PII.\n" | |
if self.pandas_llm.force_sandbox: | |
prompt += "TASK: PYTHON CODE. `print()` textual insights/answers. ```python ... ``` ONLY.\nAccess DFs as 'df_name'.\n" | |
prompt += "CRITICAL: `print()` insights, NOT raw DFs (unless asked). Synthesize RAG. Comment code. Handle issues (ambiguity, missing data) via `print()`.\n" | |
else: prompt += "TASK: TEXTUAL INSIGHTS. Explain step-by-step.\n" | |
prompt += f"--- DATA SCHEMAS ---\n{self.schemas_representation if self.schemas_representation.strip() != 'No DataFrames provided.' else 'No DFs loaded.'}\n" | |
rag_context = self.rag_system.retrieve_relevant_info(user_query) | |
meaningful_rag_kws = ["Error", "No valid", "No relevant", "Cannot retrieve", "not available", "not generated", "Skipped"] | |
is_meaningful_rag = bool(rag_context.strip()) and not any(kw in rag_context for kw in meaningful_rag_kws) | |
prompt += f"--- RAG CONTEXT (Real RAG: {self.rag_system.real_client_available_for_rag}) ---\n{rag_context if is_meaningful_rag else f'No specific RAG context or RAG issue. Details: {rag_context[:70]}...'}\n" | |
prompt += f"--- USER QUERY ---\n{user_query}\n" | |
if task_hint: prompt += f"--- GUIDANCE ---\n{task_hint}\n" | |
if cot: | |
if self.pandas_llm.force_sandbox: prompt += "--- PYTHON THOUGHT PROCESS ---\n1.Goal? 2.Data? 3.Plan? 4.Code. 5.CRITICAL: `print()` insights. 6.Review. 7.```python ... ``` ONLY.\n" | |
else: prompt += "--- TEXT RESPONSE THOUGHT PROCESS ---\n1.Goal? 2.Data? 3.Insights (DFs+RAG). 4.Structure response.\n" | |
return prompt | |
async def process_query(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: | |
hist_for_llm = self.chat_history[:] | |
self.chat_history.append({"role": "user", "content": user_query}) | |
prompt = self._build_prompt(user_query, role, task_hint, cot) | |
logging.info(f"Prompt for query: {user_query[:70]}... (Real GenAI: {_REAL_GENAI_LOADED})") | |
response = await self.pandas_llm.query(prompt, self.all_dataframes, history=hist_for_llm) | |
self.chat_history.append({"role": "assistant", "content": response}) | |
if len(self.chat_history) > 10: self.chat_history = self.chat_history[-10:]; logging.info("Chat history truncated.") | |
return response | |
def update_dataframes(self, new_dfs: dict): self.all_dataframes = new_dfs if new_dfs else {}; self.schemas_representation = get_all_schemas_representation(self.all_dataframes); logging.info("Agent DFs updated.") | |
def clear_chat_history(self): self.chat_history = []; logging.info("Agent chat history cleared.") | |
# --- Example Usage (Conceptual) --- | |
async def main_test(): | |
logging.info(f"Test (Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)})") | |
agent = EmployerBrandingAgent(LLM_MODEL_NAME, GENERATION_CONFIG_PARAMS, DEFAULT_SAFETY_SETTINGS, {}, df_rag_documents, GEMINI_EMBEDDING_MODEL_NAME) | |
for q in ["What are EB best practices?", "Hello Agent!"]: | |
logging.info(f"\nQuery: {q}") | |
resp = await agent.process_query(q) | |
logging.info(f"Response: {resp}\n") | |
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.1) | |
if __name__ == "__main__": | |
print(f"Script starting... Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}") | |
try: asyncio.run(main_test()) | |
except RuntimeError as e: | |
if "asyncio.run() cannot be called" in str(e): print("Skip asyncio.run in existing loop.") | |
else: raise | |
except Exception as e_main: print(f"Test Error: {e_main}") | |