Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
import logging | |
import matplotlib | |
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio | |
import matplotlib.pyplot as plt | |
# from functools import partial # No longer needed if gr.State(value=plot_id) is used | |
# --- Module Imports --- | |
from gradio_utils import get_url_user_token | |
# Functions from newly created/refactored modules | |
from config import ( | |
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR, | |
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR | |
) | |
from state_manager import process_and_store_bubble_token | |
from sync_logic import sync_all_linkedin_data_orchestrator | |
from ui_generators import ( | |
display_main_dashboard, | |
run_mentions_tab_display, | |
run_follower_stats_tab_display, | |
build_analytics_tab_ui_components # Import the new UI builder function | |
) | |
# Corrected import for analytics_data_processing | |
from analytics_data_processing import prepare_filtered_analytics_data | |
from analytics_plot_generator import ( | |
generate_posts_activity_plot, generate_engagement_type_plot, | |
generate_mentions_activity_plot, generate_mention_sentiment_plot, | |
generate_followers_count_over_time_plot, | |
generate_followers_growth_rate_plot, | |
generate_followers_by_demographics_plot, | |
generate_engagement_rate_over_time_plot, | |
generate_reach_over_time_plot, | |
generate_impressions_over_time_plot, | |
create_placeholder_plot, # For initializing plots | |
generate_likes_over_time_plot, | |
generate_clicks_over_time_plot, | |
generate_shares_over_time_plot, | |
generate_comments_over_time_plot, | |
generate_comments_sentiment_breakdown_plot, | |
generate_post_frequency_plot, | |
generate_content_format_breakdown_plot, | |
generate_content_topic_breakdown_plot | |
) | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s') | |
# --- Analytics Tab: Plot Update Function (Original, generates figures) --- | |
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date): | |
""" | |
Prepares analytics data using external processing function and then generates plot figures. | |
This function is primarily responsible for returning the Matplotlib figure objects. | |
""" | |
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}") | |
num_expected_plots = 23 # This should match the number of plots defined in plot_configs | |
if not token_state_value or not token_state_value.get("token"): | |
message = "β Access denied. No token. Cannot generate analytics." | |
logging.warning(message) | |
placeholder_figs = [create_placeholder_plot(title="Access Denied", message="No token.") for _ in range(num_expected_plots)] | |
return [message] + placeholder_figs | |
try: | |
(filtered_merged_posts_df, | |
filtered_mentions_df, | |
date_filtered_follower_stats_df, | |
raw_follower_stats_df, | |
start_dt_for_msg, end_dt_for_msg) = \ | |
prepare_filtered_analytics_data( | |
token_state_value, date_filter_option, custom_start_date, custom_end_date | |
) | |
except Exception as e: | |
error_msg = f"β Error preparing analytics data: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Data Preparation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
date_column_posts = token_state_value.get("config_date_col_posts", "published_at") | |
date_column_mentions = token_state_value.get("config_date_col_mentions", "date") | |
media_type_col_name = token_state_value.get("config_media_type_col", "media_type") | |
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "eb_labels") | |
logging.info(f"Data for plotting - Filtered Merged Posts: {len(filtered_merged_posts_df)} rows, Filtered Mentions: {len(filtered_mentions_df)} rows.") | |
logging.info(f"Date-Filtered Follower Stats: {len(date_filtered_follower_stats_df)} rows, Raw Follower Stats: {len(raw_follower_stats_df)} rows.") | |
try: | |
plot_figs = [] | |
plot_figs.append(generate_posts_activity_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_engagement_type_plot(filtered_merged_posts_df)) | |
fig_mentions_activity_shared = generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions) | |
fig_mention_sentiment_shared = generate_mention_sentiment_plot(filtered_mentions_df) | |
plot_figs.append(fig_mentions_activity_shared) # Original mention plot slot 1 | |
plot_figs.append(fig_mention_sentiment_shared) # Original mention plot slot 2 | |
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) | |
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Followers by Location")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Followers by Role")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Followers by Industry")) | |
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Followers by Seniority")) | |
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) | |
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts)) | |
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name)) | |
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name)) | |
# For the "Mention Analysis" section, we reuse the figures generated earlier | |
plot_figs.append(fig_mentions_activity_shared) # New UI slot for mention volume, reuses figure | |
plot_figs.append(fig_mention_sentiment_shared) # New UI slot for mention sentiment, reuses figure | |
message = f"π Analytics updated for period: {date_filter_option}" | |
if date_filter_option == "Custom Range": | |
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Any" | |
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Any" | |
message += f" (From: {s_display} To: {e_display})" | |
final_plot_figs = [] | |
for i, p_fig in enumerate(plot_figs): | |
if p_fig is not None and not isinstance(p_fig, str): | |
final_plot_figs.append(p_fig) | |
else: | |
logging.warning(f"Plot figure generation failed or returned unexpected type for slot {i}, using placeholder. Figure: {p_fig}") | |
final_plot_figs.append(create_placeholder_plot(title="Plot Error", message="Failed to generate this plot figure.")) | |
while len(final_plot_figs) < num_expected_plots: | |
logging.warning(f"Padding missing plot figure with placeholder. Expected {num_expected_plots}, got {len(final_plot_figs)}.") | |
final_plot_figs.append(create_placeholder_plot(title="Missing Plot", message="Plot figure could not be generated.")) | |
logging.info(f"Successfully generated {len(final_plot_figs)} plot figures for {num_expected_plots} UI slots.") | |
return [message] + final_plot_figs[:num_expected_plots] | |
except Exception as e: | |
error_msg = f"β Error generating analytics plot figures: {e}" | |
logging.error(error_msg, exc_info=True) | |
placeholder_figs = [create_placeholder_plot(title="Plot Generation Error", message=str(e)) for _ in range(num_expected_plots)] | |
return [error_msg] + placeholder_figs | |
# --- Gradio UI Blocks --- | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Organization Dashboard") as app: | |
token_state = gr.State(value={ | |
"token": None, "client_id": None, "org_urn": None, | |
"bubble_posts_df": pd.DataFrame(), | |
"bubble_post_stats_df": pd.DataFrame(), | |
"bubble_mentions_df": pd.DataFrame(), | |
"bubble_follower_stats_df": pd.DataFrame(), | |
"fetch_count_for_api": 0, | |
"url_user_token_temp_storage": None, | |
"config_date_col_posts": "published_at", | |
"config_date_col_mentions": "date", | |
"config_date_col_followers": "date", | |
"config_media_type_col": "media_type", | |
"config_eb_labels_col": "eb_labels" | |
}) | |
gr.Markdown("# π LinkedIn Organization Dashboard") | |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...") | |
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False) | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False) | |
def initial_load_sequence(url_token, org_urn_val, current_state): | |
logging.info(f"Initial load sequence triggered. Org URN: {org_urn_val}, URL Token: {'Present' if url_token else 'Absent'}") | |
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state) | |
dashboard_content = display_main_dashboard(new_state) | |
return status_msg, new_state, btn_update, dashboard_content | |
with gr.Tabs() as tabs: | |
with gr.TabItem("1οΈβ£ Dashboard & Sync", id="tab_dashboard_sync"): | |
gr.Markdown("System checks for existing data from Bubble. The 'Sync' button activates if new data needs to be fetched from LinkedIn based on the last sync times and data availability.") | |
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False) | |
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Sync status will appear here.</p>") | |
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Dashboard loading...</p>") | |
org_urn_display.change( | |
fn=initial_load_sequence, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html], | |
show_progress="full" | |
) | |
with gr.TabItem("2οΈβ£ Analytics", id="tab_analytics"): | |
gr.Markdown("## π LinkedIn Performance Analytics") | |
gr.Markdown("Select a date range to filter analytics. Click π£ for insights.") | |
analytics_status_md = gr.Markdown("Analytics status will appear here...") | |
with gr.Row(): | |
date_filter_selector = gr.Radio( | |
["All Time", "Last 7 Days", "Last 30 Days", "Custom Range"], | |
label="Select Date Range", value="Last 30 Days" | |
) | |
custom_start_date_picker = gr.DateTime(label="Start Date", visible=False, include_time=False, type="datetime") | |
custom_end_date_picker = gr.DateTime(label="End Date", visible=False, include_time=False, type="datetime") | |
apply_filter_btn = gr.Button("π Apply Filter & Refresh Analytics", variant="primary") | |
def toggle_custom_date_pickers(selection): | |
is_custom = selection == "Custom Range" | |
return gr.update(visible=is_custom), gr.update(visible=is_custom) | |
date_filter_selector.change( | |
fn=toggle_custom_date_pickers, | |
inputs=[date_filter_selector], | |
outputs=[custom_start_date_picker, custom_end_date_picker] | |
) | |
# --- Define plot configurations --- | |
# (Order must match the order of figures returned by update_analytics_plots_figures) | |
plot_configs = [ | |
{"label": "Posts Activity Over Time", "id": "posts_activity", "section": "Posts & Engagement Overview"}, | |
{"label": "Post Engagement Types", "id": "engagement_type", "section": "Posts & Engagement Overview"}, | |
{"label": "Mentions Activity Over Time", "id": "mentions_activity", "section": "Mentions Overview"}, | |
{"label": "Mention Sentiment Distribution", "id": "mention_sentiment", "section": "Mentions Overview"}, | |
{"label": "Followers Count Over Time", "id": "followers_count", "section": "Follower Dynamics"}, | |
{"label": "Followers Growth Rate", "id": "followers_growth_rate", "section": "Follower Dynamics"}, | |
{"label": "Followers by Location", "id": "followers_by_location", "section": "Follower Demographics"}, | |
{"label": "Followers by Role (Function)", "id": "followers_by_role", "section": "Follower Demographics"}, | |
{"label": "Followers by Industry", "id": "followers_by_industry", "section": "Follower Demographics"}, | |
{"label": "Followers by Seniority", "id": "followers_by_seniority", "section": "Follower Demographics"}, | |
{"label": "Engagement Rate Over Time", "id": "engagement_rate", "section": "Post Performance Insights"}, | |
{"label": "Reach Over Time (Clicks)", "id": "reach_over_time", "section": "Post Performance Insights"}, | |
{"label": "Impressions Over Time", "id": "impressions_over_time", "section": "Post Performance Insights"}, | |
{"label": "Reactions (Likes) Over Time", "id": "likes_over_time", "section": "Post Performance Insights"}, | |
{"label": "Clicks Over Time", "id": "clicks_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Shares Over Time", "id": "shares_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Comments Over Time", "id": "comments_over_time", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Breakdown of Comments by Sentiment", "id": "comments_sentiment", "section": "Detailed Post Engagement Over Time"}, | |
{"label": "Post Frequency", "id": "post_frequency_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Breakdown of Content by Format", "id": "content_format_breakdown_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Breakdown of Content by Topics", "id": "content_topic_breakdown_cs", "section": "Content Strategy Analysis"}, | |
{"label": "Mentions Volume Over Time (Detailed)", "id": "mention_analysis_volume", "section": "Mention Analysis (Detailed)"}, | |
{"label": "Breakdown of Mentions by Sentiment (Detailed)", "id": "mention_analysis_sentiment", "section": "Mention Analysis (Detailed)"} | |
] | |
assert len(plot_configs) == 23, "Mismatch in number of plot configurations and expected plots." | |
# --- Build Analytics Tab UI using the function from ui_generators --- | |
# This function will create the gr.Markdown for sections and rows for plots. | |
# It needs to be called within this gr.Blocks() context. | |
plot_ui_objects = build_analytics_tab_ui_components(plot_configs) | |
active_insight_plot_id_state = gr.State(None) # Stores the plot_id of the currently open insight panel | |
# --- Bomb Button Click Handler --- | |
def handle_bomb_click(plot_id_clicked, current_active_plot_id, current_token_state): | |
logging.info(f"Bomb clicked for: {plot_id_clicked}. Currently active: {current_active_plot_id}") | |
updates = [] | |
new_active_id = None | |
if plot_id_clicked == current_active_plot_id: | |
new_active_id = None # Toggle off | |
logging.info(f"Closing insights for {plot_id_clicked}") | |
else: | |
new_active_id = plot_id_clicked # Activate new one | |
logging.info(f"Opening insights for {plot_id_clicked}, closing others.") | |
for p_id_iter, ui_obj_dict in plot_ui_objects.items(): | |
is_target_one = (p_id_iter == new_active_id) | |
updates.append(gr.update(visible=is_target_one)) # For insights_col visibility | |
if is_target_one: | |
# TODO: Implement actual insight generation logic here | |
insight_text = f"**Insights for {ui_obj_dict['label']}**\n\n" | |
insight_text += f"Plot ID: `{p_id_iter}`.\n" | |
insight_text += "Detailed analysis would involve examining trends, anomalies, and correlations related to this specific chart.\n" | |
insight_text += "For example, for 'Posts Activity', we might look for days with unusually high or low activity and correlate with external events or content types." | |
updates.append(gr.update(value=insight_text)) | |
else: | |
updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict['label']}...")) # Reset placeholder | |
updates.append(new_active_id) # New value for active_insight_plot_id_state | |
logging.info(f"Returning {len(updates)-1} UI updates. New active ID: {new_active_id}") | |
return updates | |
# --- Connect Bomb Buttons --- | |
bomb_click_dynamic_outputs = [] | |
# The order of items in bomb_click_dynamic_outputs must match the order of iteration | |
# in handle_bomb_click when it creates its `updates` list. | |
# plot_ui_objects is a dictionary, so .keys() gives an arbitrary order if not Python 3.7+ | |
# To be safe, iterate based on plot_configs order for constructing outputs. | |
for config in plot_configs: | |
p_id_key = config["id"] | |
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_col"]) | |
bomb_click_dynamic_outputs.append(plot_ui_objects[p_id_key]["insights_md"]) | |
bomb_click_dynamic_outputs.append(active_insight_plot_id_state) | |
for config in plot_configs: | |
plot_id = config["id"] | |
components_dict = plot_ui_objects[plot_id] | |
components_dict["bomb"].click( | |
fn=handle_bomb_click, | |
inputs=[gr.State(value=plot_id), active_insight_plot_id_state, token_state], | |
outputs=bomb_click_dynamic_outputs, | |
api_name=f"show_insights_{plot_id}" # Gradio handles None api_name if plot_id is None (though it shouldn't be) | |
) | |
# --- Function to Refresh All Analytics UI (Plots + Reset Insights) --- | |
def refresh_all_analytics_ui_elements(current_token_state, date_filter_val, custom_start_val, custom_end_val): | |
logging.info("Refreshing all analytics UI elements.") | |
plot_generation_results = update_analytics_plots_figures( | |
current_token_state, date_filter_val, custom_start_val, custom_end_val | |
) | |
status_message_update = plot_generation_results[0] | |
generated_plot_figures = plot_generation_results[1:] | |
all_updates = [status_message_update] | |
# Plot figure updates - iterate based on plot_configs to ensure order | |
for i, config in enumerate(plot_configs): | |
p_id_key = config["id"] | |
if i < len(generated_plot_figures): | |
all_updates.append(generated_plot_figures[i]) | |
else: | |
logging.error(f"Mismatch: Expected figure for {p_id_key} but not enough figures generated.") | |
all_updates.append(create_placeholder_plot("Figure Error", f"No figure for {p_id_key}")) | |
# Insight column visibility and markdown content reset - iterate based on plot_configs | |
for config in plot_configs: | |
p_id_key = config["id"] | |
ui_obj_dict_val = plot_ui_objects[p_id_key] | |
all_updates.append(gr.update(visible=False)) # Hide insights_col | |
all_updates.append(gr.update(value=f"Click π£ for insights on {ui_obj_dict_val['label']}...")) # Reset insights_md | |
all_updates.append(None) # Reset active_insight_plot_id_state | |
return all_updates | |
# --- Define outputs for the apply_filter_btn and sync.then() --- | |
apply_filter_and_sync_outputs = [analytics_status_md] | |
# Iterate based on plot_configs to ensure order | |
for config in plot_configs: # Plot components | |
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["plot"]) | |
for config in plot_configs: # Insight column components | |
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_col"]) | |
for config in plot_configs: # Insight markdown components | |
apply_filter_and_sync_outputs.append(plot_ui_objects[config["id"]]["insights_md"]) | |
apply_filter_and_sync_outputs.append(active_insight_plot_id_state) # State component | |
# --- Connect Apply Filter Button --- | |
apply_filter_btn.click( | |
fn=refresh_all_analytics_ui_elements, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=apply_filter_and_sync_outputs, | |
show_progress="full" | |
) | |
with gr.TabItem("3οΈβ£ Mentions", id="tab_mentions"): | |
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display (from local data)", variant="secondary") | |
mentions_html = gr.HTML("Mentions data loads from Bubble after sync. Click refresh to view current local data.") | |
mentions_sentiment_dist_plot = gr.Plot(label="Mention Sentiment Distribution") | |
refresh_mentions_display_btn.click( | |
fn=run_mentions_tab_display, inputs=[token_state], | |
outputs=[mentions_html, mentions_sentiment_dist_plot], | |
show_progress="full" | |
) | |
with gr.TabItem("4οΈβ£ Follower Stats", id="tab_follower_stats"): | |
refresh_follower_stats_btn = gr.Button("π Refresh Follower Stats Display (from local data)", variant="secondary") | |
follower_stats_html = gr.HTML("Follower statistics load from Bubble after sync. Click refresh to view current local data.") | |
with gr.Row(): | |
fs_plot_monthly_gains = gr.Plot(label="Monthly Follower Gains") | |
with gr.Row(): | |
fs_plot_seniority = gr.Plot(label="Followers by Seniority (Top 10 Organic)") | |
fs_plot_industry = gr.Plot(label="Followers by Industry (Top 10 Organic)") | |
refresh_follower_stats_btn.click( | |
fn=run_follower_stats_tab_display, inputs=[token_state], | |
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry], | |
show_progress="full" | |
) | |
# --- Define the full sync_click_event chain HERE, now that analytics outputs are known --- | |
sync_event_part1 = sync_data_btn.click( | |
fn=sync_all_linkedin_data_orchestrator, | |
inputs=[token_state], | |
outputs=[sync_status_html_output, token_state], | |
show_progress="full" | |
) | |
sync_event_part2 = sync_event_part1.then( | |
fn=process_and_store_bubble_token, | |
inputs=[url_user_token_display, org_urn_display, token_state], | |
outputs=[status_box, token_state, sync_data_btn], | |
show_progress=False | |
) | |
sync_event_part3 = sync_event_part2.then( | |
fn=display_main_dashboard, | |
inputs=[token_state], | |
outputs=[dashboard_display_html], | |
show_progress=False | |
) | |
sync_event_final = sync_event_part3.then( | |
fn=refresh_all_analytics_ui_elements, | |
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker], | |
outputs=apply_filter_and_sync_outputs, | |
show_progress="full" | |
) | |
if __name__ == "__main__": | |
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): | |
logging.warning(f"WARNING: '{LINKEDIN_CLIENT_ID_ENV_VAR}' environment variable not set.") | |
if not os.environ.get(BUBBLE_APP_NAME_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_KEY_PRIVATE_ENV_VAR) or \ | |
not os.environ.get(BUBBLE_API_ENDPOINT_ENV_VAR): | |
logging.warning("WARNING: Bubble environment variables not fully set.") | |
try: | |
logging.info(f"Matplotlib version: {matplotlib.__version__} found. Backend: {matplotlib.get_backend()}") | |
except ImportError: | |
logging.error("Matplotlib is not installed. Plots will not be generated.") | |
app.launch(server_name="0.0.0.0", server_port=7860, debug=True) | |