LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
3038c7b verified
raw
history blame
10.9 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
# requests, os, urllib.parse are used by Bubble_API_Calls.py, not directly here anymore
# but good to keep if you add other direct calls later.
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Import the function from your utils file
from gradio_utils import get_url_user_token
# Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py)
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
# --- Session State dependent functions ---
def check_token_status(current_token_state):
"""Checks if a valid token exists in the session state."""
if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
return "✅ Token available"
return "❌ Waiting for token…"
def get_active_client_id(current_token_state):
"""Gets the client_id from the session state if a token is available."""
if current_token_state and current_token_state.get("token") and current_token_state.get("status"):
return current_token_state.get("client_id", "Client ID not set")
return ""
# --- Function to process and store token from Bubble ---
def process_and_store_bubble_token(url_user_token_str, current_token_state):
"""
Fetches token from Bubble, updates session state, and returns UI update values.
Args:
url_user_token_str: The token string extracted from the URL.
current_token_state: The current session state for the token.
Returns:
Tuple: (bubble_api_status_msg, overall_status, client_id_display, updated_token_state)
"""
bubble_api_status_msg = "Waiting for URL token..."
new_token_state = current_token_state.copy() if current_token_state else {"status": False, "token": None, "client_id": None}
if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str:
bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})"
# Even if no valid URL token, return current status based on existing state
return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state
print(f"Attempting to fetch token from Bubble with state: {url_user_token_str}")
parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str)
if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict:
new_token_state["status"] = True
new_token_state["token"] = parsed_token_dict
new_token_state["client_id"] = f"Bubble (state: {url_user_token_str})"
bubble_api_status_msg = f"✅ Token successfully fetched from Bubble for state: {url_user_token_str}"
print(bubble_api_status_msg)
else:
# Fetch failed or no valid token returned, keep previous state or mark as no token
# If you want a Bubble failure to explicitly clear any old token:
# new_token_state["status"] = False
# new_token_state["token"] = None
# new_token_state["client_id"] = None
# For now, it just means the Bubble fetch didn't provide a new one.
bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for state: {url_user_token_str}. Check console logs from Bubble_API_Calls.py."
print(bubble_api_status_msg)
# If the goal is that ONLY a successful bubble fetch provides a token, then reset status:
new_token_state["status"] = False
new_token_state["token"] = None
# client_id might be kept or cleared based on preference
# new_token_state["client_id"] = f"Bubble fetch failed (state: {url_user_token_str})"
return bubble_api_status_msg, check_token_status(new_token_state), get_active_client_id(new_token_state), new_token_state
# --- Guarded fetch functions (now use token_state) ---
def guarded_fetch_dashboard(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
html = fetch_and_render_dashboard(
current_token_state["client_id"],
current_token_state["token"]
)
return html
def guarded_fetch_analytics(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None
)
client_id = current_token_state["client_id"]
token_data = current_token_state["token"]
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
client_id,
token_data
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load(current_token_state):
if not (current_token_state and current_token_state.get("status") and current_token_state.get("token")):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
html, fig = generate_mentions_dashboard(
current_token_state["client_id"],
current_token_state["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
# Session state to store the token info
# Initial value is a dictionary representing an unauthenticated state.
token_state = gr.State(value={"status": False, "token": None, "client_id": None})
gr.Markdown("# 🚀 LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
# Hidden textbox to capture token from URL
url_user_token_display = gr.Textbox(
label="User Token (from URL - Hidden)",
interactive=False,
placeholder="Attempting to load from URL...",
visible=False
)
# Display for Bubble API call status
bubble_api_status_display = gr.Textbox(label="Bubble API Call Status", interactive=False, placeholder="Waiting for URL token...")
# Overall status displays
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
client_display = gr.Textbox(label="Client ID (Active)", interactive=False)
# Note: The textbox for displaying the actual token is removed.
# --- Load URL parameter on app start & Link to Bubble Fetch ---
app.load(
fn=get_url_user_token,
inputs=None, # get_url_user_token takes gr.Request implicitly
outputs=[url_user_token_display]
)
# When the hidden url_user_token_display changes (due to app.load),
# trigger the Bubble API call and update session state.
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, token_state], # Pass current state
outputs=[bubble_api_status_display, status_box, client_display, token_state] # Update UI and state
)
# Initial UI state based on initial token_state
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
app.load(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
# Timer to periodically update status (e.g., if token could expire or be managed externally)
# This might be less critical if token acquisition is only at the start via URL.
timer = gr.Timer(5.0) # Poll every 5 seconds, adjust as needed
timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
timer.tick(fn=get_active_client_id, inputs=[token_state], outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("📊 Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[token_state], # Pass session state
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("📈 Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True)
growth_rate_plot = gr.Plot(visible=True)
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True)
with gr.Row():
interaction_data = gr.Plot(visible=True)
with gr.Row():
eb_data = gr.Plot(visible=True)
with gr.Row():
mentions_vol_data = gr.Plot(visible=True)
mentions_sentiment_data = gr.Plot(visible=True)
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state], # Pass session state
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot(visible=True)
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state], # Pass session state
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
# Ensure the 'Bubble_API' environment variable is set where this app is run.
app.launch(server_name="0.0.0.0", server_port=7860, share=True)