LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
a9b7f24 verified
raw
history blame
10.3 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Shared state for token received via POST
token_received = {"status": False, "token": None, "client_id": None}
# --- Function to get user_token from URL on load ---
def get_url_user_token(request: gr.Request):
"""
This function is called when the Gradio app loads.
It attempts to retrieve 'user_token' from the URL query parameters.
"""
user_token_from_url = "user_token not found in URL" # Default message
if request:
# request.query_params is a dictionary-like object.
# Example URL: https://your-gradio-app/?user_token=ABC123XYZ
# query_params would be {'user_token': 'ABC123XYZ'}
retrieved_token = request.query_params.get("session_id")
if retrieved_token:
user_token_from_url = retrieved_token
print(f"Retrieved user_token from URL: {user_token_from_url}")
else:
print("user_token key was not found in the URL query parameters.")
else:
# This case should ideally not happen if app.load is configured correctly
# and Gradio supplies the request object.
print("Request object not available to get_url_user_token function.")
user_token_from_url = "Could not access request object on load"
return user_token_from_url
# --- Handlers for token reception (POST) and status ---
def receive_token(accessToken: str, client_id: str):
"""
Called by a hidden POST mechanism to supply the OAuth code/token and client ID.
"""
try:
# The .replace("'", '"') is kept from your original code.
# Be cautious if accessToken format can vary.
token_dict = json.loads(accessToken.replace("'", '"'))
except json.JSONDecodeError as e:
print(f"Error decoding accessToken: {e}")
token_received["status"] = False # Ensure status reflects failure
token_received["token"] = None
token_received["client_id"] = client_id # Keep client_id if provided
return {
"status": "❌ Invalid token format (POST)",
"token": "",
"client_id": client_id
}
token_received["status"] = True
token_received["token"] = token_dict
token_received["client_id"] = client_id
print(f"Token (from POST) received successfully. Client ID: {client_id}")
return {
"status": "βœ… Token received (POST)",
"token": token_dict.get("access_token", "Access token key missing"), # Display part of the token
"client_id": client_id
}
def check_status():
return "βœ… Token received (POST)" if token_received["status"] else "❌ Waiting for token (POST)…"
def show_token(): # Shows token from POST
if token_received["status"] and token_received["token"]:
return token_received["token"].get("access_token", "Access token key missing")
return ""
def show_client(): # Shows client_id from POST
return token_received["client_id"] if token_received["status"] and token_received["client_id"] else ""
# --- Guarded fetch functions (using token from POST) ---
def guarded_fetch_dashboard():
if not token_received["status"]:
return "<p style='color:red; text-align:center;'>❌ Access denied. No token (POST) available. Please send token first.</p>"
# token_received["client_id"] and token_received["token"] required by fetch function
html = fetch_and_render_dashboard(
token_received["client_id"],
token_received["token"]
)
return html
def guarded_fetch_analytics():
if not token_received["status"]:
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token (POST) available.</p>",
None, None, None, None, None, None, None # Match number of outputs
)
# Assuming fetch_and_render_analytics returns 8 values
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
token_received["client_id"],
token_received["token"]
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load():
if not token_received["status"]: # Added guard similar to other functions
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token (POST) available.</p>", None)
html, fig = generate_mentions_dashboard(
token_received["client_id"],
token_received["token"]
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Send your OAuth token via API call (POST), then explore dashboard and analytics. URL parameters can also be displayed.")
# Hidden elements: simulate POST endpoint for OAuth token
hidden_token = gr.Textbox(visible=False, elem_id="hidden_token")
hidden_client = gr.Textbox(visible=False, elem_id="hidden_client_id")
hidden_btn = gr.Button(visible=False, elem_id="hidden_btn")
# --- Display elements ---
# Textbox for the user_token from URL
url_user_token_display = gr.Textbox(label="User Token (from URL)", interactive=False, placeholder="Attempting to load from URL...")
status_box = gr.Textbox(label="POST Token Status", interactive=False) # Clarified label
token_display = gr.Textbox(label="Access Token (from POST)", interactive=False)
client_display = gr.Textbox(label="Client ID (from POST)", interactive=False)
# --- Load URL parameter on app start ---
# The `get_url_user_token` function will be called when the app loads.
# `gr.Request` is automatically passed to `get_url_user_token`.
app.load(
fn=get_url_user_token,
inputs=None, # No explicit Gradio inputs needed, only gr.Request
outputs=[url_user_token_display]
)
# Wire hidden POST handler for OAuth token
hidden_btn.click(
fn=receive_token,
inputs=[hidden_token, hidden_client],
outputs=[status_box, token_display, client_display]
)
# Polling timer to update status and displays for the POSTed token
# Initial values are set by app.load for status_box, token_display, client_display
# then updated by timer ticks or hidden_btn click.
# We call check_status, show_token, show_client once at load time and then via timer.
app.load(fn=check_status, outputs=status_box)
app.load(fn=show_token, outputs=token_display)
app.load(fn=show_client, outputs=client_display)
timer = gr.Timer(1.0) # Poll every 1 second
timer.tick(fn=check_status, outputs=status_box)
timer.tick(fn=show_token, outputs=token_display)
timer.tick(fn=show_client, outputs=client_display)
# Tabs for functionality
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for POST token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[],
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for POST token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True) # Made visible, will be empty until data
growth_rate_plot = gr.Plot(visible=True) # Made visible
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True) # Made visible
with gr.Row():
interaction_data = gr.Plot(visible=True) # Made visible
with gr.Row():
eb_data = gr.Plot(visible=True) # Made visible
with gr.Row():
mentions_vol_data = gr.Plot(visible=True) # Made visible
mentions_sentiment_data = gr.Plot(visible=True) # Made visible
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[],
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data],
# Show plots after click; they might need to be initially invisible if fetch_and_render_analytics can return None for plots on error
# For simplicity, keeping them visible. Handle None returns in your fetch function if necessary.
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for POST token...</p>") # Added placeholder
mentions_plot = gr.Plot(visible=True) # Made visible
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[],
outputs=[mentions_html, mentions_plot]
)
# Launch the app
if __name__ == "__main__":
# The share=True option creates a public link. Be mindful of security.
# For embedding, you'll use the server_name and server_port you configure for your hosting.
app.launch(server_name="0.0.0.0", server_port=7860, share=True)