LinkedinMonitor / analytics_fetch_and_rendering.py
GuglielmoTor's picture
Update analytics_fetch_and_rendering.py
c35c495 verified
raw
history blame
11.2 kB
import json
import requests
from datetime import datetime, timezone, timedelta
import matplotlib.pyplot as plt
import gradio as gr
import traceback
import html
from sessions import create_session
from error_handling import display_error
from Data_Fetching_and_Rendering import fetch_posts_and_stats
import logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = 'https://api.linkedin.com/rest'
def extract_follower_gains(data):
elements = data.get("elements", [])
if not elements:
return []
results = []
for item in elements:
start_timestamp = item.get("timeRange", {}).get("start")
if not start_timestamp:
continue
try:
date_str = datetime.fromtimestamp(start_timestamp / 1000, tz=timezone.utc).strftime('%Y-%m')
except Exception:
continue
gains = item.get("followerGains", {})
results.append({
"date": date_str,
"organic": gains.get("organicFollowerGain", 0) or 0,
"paid": gains.get("paidFollowerGain", 0) or 0
})
return sorted(results, key=lambda x: x['date'])
def fetch_analytics_data(client_id, token):
if not token:
raise ValueError("comm_token is missing.")
token_dict = token if isinstance(token, dict) else {'access_token': token, 'token_type': 'Bearer'}
session = create_session(client_id, token=token_dict)
try:
org_urn, org_name = "urn:li:organization:19010008", "GRLS"
count_url = f"{API_V2_BASE}/networkSizes/{org_urn}?edgeType=CompanyFollowedByMember"
follower_count = session.get(count_url).json().get("firstDegreeSize", 0)
start = datetime.now(timezone.utc) - timedelta(days=365)
start = start.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
start_ms = int(start.timestamp() * 1000)
gains_url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity&organizationalEntity={org_urn}"
f"&timeIntervals.timeGranularityType=MONTH"
f"&timeIntervals.timeRange.start={start_ms}"
)
gains_data = session.get(gains_url).json()
gains = extract_follower_gains(gains_data)
return org_name, follower_count, gains
except requests.exceptions.RequestException as e:
status = getattr(e.response, 'status_code', 'N/A')
msg = f"Failed to fetch LinkedIn analytics (Status: {status})."
raise ValueError(msg) from e
except Exception as e:
raise ValueError("Unexpected error during LinkedIn analytics fetch.") from e
def plot_follower_gains(data):
plt.style.use('seaborn-v0_8-whitegrid')
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No follower gains data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Monthly Follower Gains')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
organic = [d['organic'] for d in data]
paid = [d['paid'] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates, organic, label='Organic', marker='o', color='#0073b1')
ax.plot(dates, paid, label='Paid', marker='x', linestyle='--', color='#d9534f')
ax.set(title='Monthly Follower Gains', xlabel='Month', ylabel='New Followers')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def plot_growth_rate(data, total):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No data for growth rate.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Growth Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
dates = [d['date'] for d in data]
gains = [d['organic'] + d['paid'] for d in data]
history = []
current = total
for g in reversed(gains):
history.insert(0, current)
current -= g
rates = [((history[i] - history[i-1]) / history[i-1] * 100 if history[i-1] else 0) for i in range(1, len(history))]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(dates[1:], rates, label='Growth Rate (%)', marker='o', color='green')
ax.set(title='Monthly Growth Rate (%)', xlabel='Month', ylabel='Growth %')
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_monthly_avg_engagement_rate(posts):
from collections import defaultdict
import statistics
if not posts:
return []
monthly_data = defaultdict(lambda: {"engagement_sum": 0, "post_count": 0, "impression_total": 0})
for post in posts:
try:
month = post["when"][:7] # Format: YYYY-MM
likes = post.get("likes", 0)
comments = post.get("comments", 0)
shares = post.get("shares", 0)
clicks = post.get("clicks", 0)
impressions = post.get("impressions", 0)
engagement = likes + comments + shares + clicks
monthly_data[month]["engagement_sum"] += engagement
monthly_data[month]["post_count"] += 1
monthly_data[month]["impression_total"] += impressions
except Exception:
continue
results = []
for month in sorted(monthly_data.keys()):
data = monthly_data[month]
if data["post_count"] == 0 or data["impression_total"] == 0:
rate = 0
else:
avg_impressions = data["impression_total"] / data["post_count"]
rate = (data["engagement_sum"] / (data["post_count"] * avg_impressions)) * 100
results.append({"month": month, "engagement_rate": round(rate, 2)})
return results
def plot_avg_engagement_rate(data):
import matplotlib.pyplot as plt
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No engagement data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Average Post Engagement Rate (%)')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
rates = [d["engagement_rate"] for d in data]
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(months, rates, label="Engagement Rate (%)", marker="s", color="#ff7f0e")
ax.set(title="Average Post Engagement Rate (%)", xlabel="Month", ylabel="Engagement Rate %")
ax.tick_params(axis='x', rotation=45)
ax.legend()
plt.tight_layout()
return fig
def compute_post_interaction_metrics(posts):
from collections import defaultdict
if not posts:
return []
monthly_stats = defaultdict(lambda: {
"comments": 0,
"shares": 0,
"clicks": 0,
"likes": 0,
"posts": 0
})
for post in posts:
try:
month = post["when"][:7] # YYYY-MM
monthly_stats[month]["comments"] += post.get("comments", 0)
monthly_stats[month]["shares"] += post.get("shares", 0)
monthly_stats[month]["clicks"] += post.get("clicks", 0)
monthly_stats[month]["likes"] += post.get("likes", 0)
monthly_stats[month]["posts"] += 1
except Exception:
continue
results = []
for month in sorted(monthly_stats.keys()):
stats = monthly_stats[month]
total_engagement = stats["comments"] + stats["shares"] + stats["clicks"] + stats["likes"]
posts_count = stats["posts"] or 1 # Avoid division by zero
results.append({
"month": month,
"comments_per_post": round(stats["comments"] / posts_count, 2),
"shares_per_post": round(stats["shares"] / posts_count, 2),
"clicks_per_post": round(stats["clicks"] / posts_count, 2),
"comment_share_of_engagement": round((stats["comments"] / total_engagement) * 100 if total_engagement else 0, 2)
})
logging.info(f"this are the inter<ction results {results}")
return results
def plot_interaction_metrics(data):
if not data:
fig, ax = plt.subplots(figsize=(10, 5))
ax.text(0.5, 0.5, 'No interaction data.', ha='center', va='center', transform=ax.transAxes)
ax.set_title('Post Interaction Metrics')
ax.set_xticks([]); ax.set_yticks([])
return fig
months = [d["month"] for d in data]
comments_pp = [d["comments_per_post"] for d in data]
shares_pp = [d["shares_per_post"] for d in data]
clicks_pp = [d["clicks_per_post"] for d in data]
comment_share = [d["comment_share_of_engagement"] for d in data]
fig, axes = plt.subplots(nrows=4, ncols=1, figsize=(12, 10), sharex=True)
fig.suptitle("Post Interaction Metrics", fontsize=16)
axes[0].plot(months, comments_pp, marker="o", color="#1f77b4")
axes[0].set_ylabel("Comments/Post")
axes[0].grid(True)
axes[1].plot(months, shares_pp, marker="s", color="#ff7f0e")
axes[1].set_ylabel("Shares/Post")
axes[1].grid(True)
axes[2].plot(months, clicks_pp, marker="^", color="#2ca02c")
axes[2].set_ylabel("Clicks/Post")
axes[2].grid(True)
axes[3].plot(months, comment_share, marker="x", linestyle="--", color="#d62728")
axes[3].set_ylabel("Comment Share (%)")
axes[3].set_xlabel("Month")
axes[3].grid(True)
plt.xticks(rotation=45)
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Leave space for suptitle
return fig
def fetch_and_render_analytics(client_id, token):
loading = gr.update(value="<p>Loading follower count...</p>", visible=True)
hidden = gr.update(value=None, visible=False)
if not token:
error = "<p style='color:red;'>❌ Missing token. Please log in.</p>"
return gr.update(value=error, visible=True), hidden, hidden
try:
name, count, gains = fetch_analytics_data(client_id, token)
posts, org_name, sentiments = fetch_posts_and_stats(client_id, token, count=30)
engagement_data = compute_monthly_avg_engagement_rate(posts)
interaction_data = compute_post_interaction_metrics(posts)
count_html = f"""
<div style='text-align:center; padding:20px; background:#e7f3ff; border:1px solid #bce8f1; border-radius:8px;'>
<p style='font-size:1.1em; color:#31708f;'>Total Followers for</p>
<p style='font-size:1.4em; font-weight:bold; color:#005a9e;'>{html.escape(name)}</p>
<p style='font-size:2.8em; font-weight:bold; color:#0073b1;'>{count:,}</p>
<p style='font-size:0.9em; color:#777;'>(As of latest data)</p>
</div>
"""
return gr.update(value=count_html, visible=True), gr.update(value=plot_follower_gains(gains), visible=True), gr.update(value=plot_growth_rate(gains, count), visible=True), gr.update(value=plot_avg_engagement_rate(engagement_data), visible=True), gr.update(value=plot_interaction_metrics(interaction_data), visible=True)
except Exception as e:
error = display_error("Analytics load failed.", e).get('value', "<p style='color:red;'>Error loading data.</p>")
return gr.update(value=error, visible=True), hidden, hidden