Spaces:
Running
Running
# -- coding: utf-8 -- | |
import json | |
import requests | |
import logging | |
from datetime import datetime, timezone | |
from dateutil.relativedelta import relativedelta # For robust month arithmetic | |
from urllib.parse import quote | |
# Assuming you have a sessions.py with create_session | |
# If sessions.py or create_session is not found, it will raise an ImportError, | |
# which is appropriate for a module that depends on it. | |
from sessions import create_session | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
API_V2_BASE = 'https://api.linkedin.com/v2' | |
API_REST_BASE = "https://api.linkedin.com/rest" | |
LINKEDIN_API_VERSION = "202502" # As per user's example for follower stats | |
# --- ID to Name Mapping Helper Functions --- | |
def _fetch_linkedin_names(session, url, params, result_key_path, name_key_path, id_key="id"): | |
""" | |
Generic helper to fetch and map IDs to names from a LinkedIn API endpoint. | |
result_key_path: list of keys to navigate to the list of items (e.g., ["elements"]) | |
name_key_path: list of keys to navigate to the name within an item (e.g., ["name", "localized", "en_US"]) | |
""" | |
mapping = {} | |
try: | |
logging.debug(f"Fetching names from URL: {url} with params: {json.dumps(params)}") # Log params for clarity | |
response = session.get(url, params=params) | |
response.raise_for_status() | |
data = response.json() | |
items = data | |
for key in result_key_path: | |
if isinstance(items, dict): | |
items = items.get(key, []) | |
else: | |
logging.warning(f"Expected dict to get key '{key}' but got {type(items)} at path {result_key_path} for URL {url}. Check result_key_path.") | |
return mapping | |
if isinstance(items, dict): | |
for item_id_str, item_data in items.items(): | |
name = item_data | |
for key_nav in name_key_path: | |
if isinstance(name, dict): | |
name = name.get(key_nav) | |
else: | |
name = None | |
break | |
if name: | |
mapping[item_id_str] = name | |
else: | |
logging.warning(f"No name found for ID {item_id_str} at path {name_key_path} in item: {item_data} from URL {url}") | |
elif isinstance(items, list): | |
for item in items: | |
item_id_val = item.get(id_key) | |
name = item | |
for key_nav in name_key_path: | |
if isinstance(name, dict): | |
name = name.get(key_nav) | |
else: | |
name = None | |
break | |
if item_id_val is not None and name: | |
mapping[str(item_id_val)] = name | |
else: | |
logging.warning(f"No ID ('{id_key}') or name found at path {name_key_path} in item: {item} from URL {url}") | |
else: | |
logging.warning(f"Expected list or dict of items at {result_key_path} from URL {url}, got {type(items)}") | |
except requests.exceptions.RequestException as e: | |
status_code = getattr(e.response, 'status_code', 'N/A') | |
error_text = getattr(e.response, 'text', str(e)) # Log the raw error text | |
logging.error(f"Error fetching names from {url} (Status: {status_code}): {error_text}") | |
except json.JSONDecodeError as e: | |
logging.error(f"Error decoding JSON for names from {url}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}") | |
except Exception as e: | |
logging.error(f"Unexpected error fetching names from {url}: {e}", exc_info=True) | |
return mapping | |
def get_functions_map(session): | |
"""Fetches all LinkedIn functions and returns a map of {id: name}.""" | |
url = f"{API_V2_BASE}/functions" | |
params = {} # Relies on Accept-Language header from session | |
logging.info("Fetching all LinkedIn functions.") | |
return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id") | |
def get_seniorities_map(session): | |
"""Fetches all LinkedIn seniorities and returns a map of {id: name}.""" | |
url = f"{API_V2_BASE}/seniorities" | |
params = {} # Relies on Accept-Language header from session | |
logging.info("Fetching all LinkedIn seniorities.") | |
return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id") | |
def get_industries_map(session, industry_urns, version="DEFAULT"): | |
"""Fetches names for a list of industry URNs. Returns a map {id: name}.""" | |
if not industry_urns: return {} | |
industry_ids = [_parse_urn_to_id(urn) for urn in industry_urns if urn] | |
unique_ids = list(set(filter(None, industry_ids))) | |
if not unique_ids: return {} | |
url = f"{API_V2_BASE}/industryTaxonomyVersions/{version}/industries" | |
# As per LinkedIn docs for BATCH_GET: ids={id1}&ids={id2}&locale.language=en&locale.country=US | |
params = { | |
'ids': unique_ids, # requests library will format this as ids=id1&ids=id2... | |
'locale.language': 'en', | |
'locale.country': 'US' | |
} | |
logging.info(f"Fetching names for {len(unique_ids)} unique industry IDs using BATCH_GET.") | |
return _fetch_linkedin_names(session, url, params, ["results"], ["name", "localized", "en_US"]) | |
def get_geo_map(session, geo_urns): | |
"""Fetches names for a list of geo URNs. Returns a map {id: name}.""" | |
if not geo_urns: return {} | |
geo_ids = [_parse_urn_to_id(urn) for urn in geo_urns if urn] | |
unique_ids = list(set(filter(None, geo_ids))) | |
if not unique_ids: return {} | |
# As per LinkedIn docs for BATCH_GET: ids=List(12345,23456)&locale=(language:en,country:US) | |
ids_param_string = "List(" + ",".join(map(str, unique_ids)) + ")" | |
locale_param_string = "(language:en,country:US)" # Must be exactly this string format | |
# Parameters must be passed in the URL string directly for this specific API format | |
# The `params` dict for session.get() will be empty. | |
url = f"{API_V2_BASE}/geo?ids={quote(ids_param_string)}&locale={quote(locale_param_string)}" | |
logging.info(f"Fetching names for {len(unique_ids)} unique geo IDs using URL: {url}") | |
return _fetch_linkedin_names(session, url, {}, ["results"], ["defaultLocalizedName", "value"]) | |
def _parse_urn_to_id(urn_string): | |
"""Helper to get the last part (ID) from a URN string.""" | |
if not isinstance(urn_string, str): | |
logging.debug(f"Invalid URN type: {type(urn_string)}, value: {urn_string}. Cannot parse ID.") | |
return None | |
try: | |
return urn_string.split(':')[-1] | |
except IndexError: | |
logging.warning(f"Could not parse ID from URN: {urn_string}") | |
return None | |
except Exception as e: | |
logging.error(f"Unexpected error parsing URN {urn_string}: {e}") | |
return None | |
# --- Follower Data Fetching Functions --- | |
def fetch_monthly_follower_gains(session, org_urn): | |
""" | |
Fetches monthly follower gains for the last 12-13 months to ensure full coverage. | |
Uses parameter names as confirmed by user's working script. | |
""" | |
results = [] | |
now = datetime.now(timezone.utc) | |
# Go back 13 months to ensure we capture at least 12 full previous months | |
# and have a buffer, as LinkedIn might report based on full previous months. | |
thirteen_months_ago = now - relativedelta(months=13) | |
start_of_period = thirteen_months_ago.replace(day=1, hour=0, minute=0, second=0, microsecond=0) | |
start_ms = int(start_of_period.timestamp() * 1000) | |
# Parameters as per user's working script and common LinkedIn patterns for time-bound stats | |
params = { | |
'q': 'organizationalEntity', | |
'organizationalEntity': org_urn, | |
'timeIntervals.timeGranularityType': 'MONTH', | |
'timeIntervals.timeRange.start': start_ms | |
} | |
url = f"{API_REST_BASE}/organizationalEntityFollowerStatistics" | |
logging.info(f"Fetching monthly follower gains from: {url} with params: {json.dumps(params)}") | |
try: | |
response = session.get(url, params=params) | |
response.raise_for_status() | |
data = response.json() | |
for item in data.get("elements", []): | |
time_range = item.get("timeRange", {}) | |
start_timestamp_ms = time_range.get("start") | |
if start_timestamp_ms is None: | |
logging.warning("Skipping item due to missing start timestamp in monthly gains.") | |
continue | |
date_obj = datetime.fromtimestamp(start_timestamp_ms / 1000, tz=timezone.utc) | |
date_str = date_obj.strftime('%Y-%m-%d') # First day of the month | |
follower_gains = item.get("followerGains", {}) | |
organic_gain = follower_gains.get("organicFollowerGain", 0) | |
paid_gain = follower_gains.get("paidFollowerGain", 0) | |
results.append({ | |
"category_name": date_str, | |
"follower_count_organic": organic_gain, | |
"follower_count_paid": paid_gain, | |
"follower_count_type": "follower_gains_monthly", | |
"organization_urn": org_urn | |
}) | |
logging.info(f"Fetched {len(results)} monthly follower gain entries for org URN {org_urn}.") | |
except requests.exceptions.RequestException as e: | |
status_code = getattr(e.response, 'status_code', 'N/A') | |
error_text = getattr(e.response, 'text', str(e)) | |
logging.error(f"Error fetching monthly follower gains for {org_urn} (Status: {status_code}): {error_text}") | |
except json.JSONDecodeError as e: | |
logging.error(f"Error decoding JSON for monthly follower gains for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}") | |
except Exception as e: | |
logging.error(f"Unexpected error fetching monthly follower gains for {org_urn}: {e}", exc_info=True) | |
return results | |
def fetch_follower_demographics(session, org_urn, functions_map, seniorities_map): | |
""" | |
Fetches current follower demographics, applying Top-N for specified categories. | |
""" | |
final_demographics_results = [] | |
# Parameters for the main demographics call | |
params = { | |
'q': 'organizationalEntity', | |
'organizationalEntity': org_urn | |
} | |
url = f"{API_REST_BASE}/organizationalEntityFollowerStatistics" | |
logging.info(f"Fetching follower demographics from: {url} for org URN {org_urn} with params: {json.dumps(params)}") | |
try: | |
response = session.get(url, params=params) | |
response.raise_for_status() | |
data = response.json() | |
elements = data.get("elements", []) | |
if not elements: | |
logging.warning(f"No elements found in follower demographics response for {org_urn}.") | |
return [] | |
stat_element = elements[0] | |
def _get_entries_for_type(raw_items_list, type_name, id_map, id_field_name_in_item, org_urn_val): | |
current_type_entries = [] | |
if not raw_items_list: | |
logging.debug(f"No raw items for demographic type '{type_name}' for org {org_urn_val}.") | |
return current_type_entries | |
for item in raw_items_list: | |
category_name_val = "Unknown" | |
if type_name == "follower_association": | |
category_name_val = item.get(id_field_name_in_item, f"Unknown {id_field_name_in_item}") | |
else: | |
urn_val = item.get(id_field_name_in_item) | |
entity_id = _parse_urn_to_id(urn_val) | |
category_name_val = id_map.get(str(entity_id), f"Unknown {type_name.split('_')[-1].capitalize()} (ID: {entity_id if entity_id else urn_val})") | |
counts = item.get("followerCounts", {}) | |
organic_count = counts.get("organicFollowerCount", 0) | |
paid_count = counts.get("paidFollowerCount", 0) | |
current_type_entries.append({ | |
"category_name": category_name_val, | |
"follower_count_organic": organic_count, | |
"follower_count_paid": paid_count, | |
"follower_count_type": type_name, | |
"organization_urn": org_urn_val | |
}) | |
return current_type_entries | |
industry_urns_to_map = [item.get("industry") for item in stat_element.get("followerCountsByIndustry", []) if item.get("industry")] | |
geo_urns_to_map = [item.get("geo") for item in stat_element.get("followerCountsByGeoCountry", []) if item.get("geo")] | |
live_industries_map = get_industries_map(session, industry_urns_to_map) | |
live_geo_map = get_geo_map(session, geo_urns_to_map) | |
demographic_configs = [ | |
{"items_key": "followerCountsBySeniority", "type_name": "follower_seniority", "id_map": seniorities_map, "id_field": "seniority", "top_n": 10}, | |
{"items_key": "followerCountsByFunction", "type_name": "follower_function", "id_map": functions_map, "id_field": "function", "top_n": 10}, | |
{"items_key": "followerCountsByIndustry", "type_name": "follower_industry", "id_map": live_industries_map, "id_field": "industry", "top_n": 10}, | |
{"items_key": "followerCountsByGeoCountry", "type_name": "follower_geo", "id_map": live_geo_map, "id_field": "geo", "top_n": 10}, | |
{"items_key": "followerCountsByAssociationType", "type_name": "follower_association", "id_map": {}, "id_field": "associationType", "top_n": None} | |
] | |
for config in demographic_configs: | |
raw_items = stat_element.get(config["items_key"], []) | |
processed_entries = _get_entries_for_type(raw_items, config["type_name"], config["id_map"], config["id_field"], org_urn) | |
if config["top_n"] is not None and processed_entries: | |
for entry in processed_entries: | |
if not isinstance(entry.get("follower_count_organic"), (int, float)): | |
entry["follower_count_organic"] = 0 | |
sorted_entries = sorted(processed_entries, key=lambda x: x.get("follower_count_organic", 0), reverse=True) | |
final_demographics_results.extend(sorted_entries[:config["top_n"]]) | |
logging.debug(f"Added top {config['top_n']} for {config['type_name']}. Count: {len(sorted_entries[:config['top_n']])}") | |
else: | |
final_demographics_results.extend(processed_entries) | |
logging.debug(f"Added all for {config['type_name']}. Count: {len(processed_entries)}") | |
logging.info(f"Processed follower demographics for {org_urn}. Total entries from all types: {len(final_demographics_results)}") | |
except requests.exceptions.RequestException as e: | |
status_code = getattr(e.response, 'status_code', 'N/A') | |
error_text = getattr(e.response, 'text', str(e)) | |
logging.error(f"Error fetching follower demographics for {org_urn} (Status: {status_code}): {error_text}") | |
except json.JSONDecodeError as e: | |
logging.error(f"Error decoding JSON for follower demographics for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}") | |
except Exception as e: | |
logging.error(f"Unexpected error fetching follower demographics for {org_urn}: {e}", exc_info=True) | |
return final_demographics_results | |
# --- Main Orchestration Function --- | |
def get_linkedin_follower_stats(comm_client_id, community_token, org_urn): | |
""" | |
Main function to fetch all follower statistics (monthly gains and demographics) | |
and format them for Bubble. | |
""" | |
if not all([comm_client_id, community_token, org_urn]): | |
logging.error("Client ID, token, or Organization URN is missing for get_linkedin_follower_stats.") | |
return [] | |
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'} | |
session = None | |
try: | |
session = create_session(comm_client_id, token=token_dict) | |
session.headers.update({ | |
"X-Restli-Protocol-Version": "2.0.0", | |
"LinkedIn-Version": LINKEDIN_API_VERSION, | |
"Accept-Language": "en_US" # Explicitly set for v2 name lookups if not default in session | |
}) | |
except Exception as e: | |
logging.error(f"Failed to create session or update headers for org {org_urn}: {e}", exc_info=True) | |
return [] | |
logging.info(f"Starting follower stats retrieval for org: {org_urn}") | |
functions_map = get_functions_map(session) | |
seniorities_map = get_seniorities_map(session) | |
if not functions_map: logging.warning(f"Functions map is empty for org {org_urn}. Function names might not be resolved.") | |
if not seniorities_map: logging.warning(f"Seniorities map is empty for org {org_urn}. Seniority names might not be resolved.") | |
all_follower_data = [] | |
monthly_gains = fetch_monthly_follower_gains(session, org_urn) | |
all_follower_data.extend(monthly_gains) | |
demographics = fetch_follower_demographics(session, org_urn, functions_map, seniorities_map) | |
all_follower_data.extend(demographics) | |
logging.info(f"Successfully compiled {len(all_follower_data)} total follower stat entries for {org_urn}.") | |
return all_follower_data | |