Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import json | |
import os | |
import logging | |
from Data_Fetching_and_Rendering import fetch_and_render_dashboard | |
from analytics_fetch_and_rendering import fetch_and_render_analytics | |
from mentions_dashboard import generate_mentions_dashboard | |
from gradio_utils import get_url_user_token | |
from Bubble_API_Calls import fetch_linkedin_token_from_bubble, bulk_upload_to_bubble | |
from Linkedin_Data_API_Calls import ( | |
fetch_linkedin_posts_core, | |
fetch_comments, | |
analyze_sentiment, | |
compile_detailed_posts, | |
prepare_data_for_bubble | |
) | |
def check_token_status(token_state): | |
return "β Token available" if token_state and token_state.get("token") else "β Token not available" | |
def process_and_store_bubble_token(url_user_token, org_urn, token_state): | |
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None} | |
new_state.update({"token": None, "org_urn": org_urn}) | |
client_id = os.environ.get("Linkedin_client_id") | |
if not client_id: | |
print("β CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.") | |
new_state["client_id"] = "ENV VAR MISSING" | |
return check_token_status(new_state), new_state | |
new_state["client_id"] = client_id | |
if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token: | |
return check_token_status(new_state), new_state | |
print(f"Attempting to fetch token from Bubble with user token: {url_user_token}") | |
parsed = fetch_linkedin_token_from_bubble(url_user_token) | |
if isinstance(parsed, dict) and "access_token" in parsed: | |
new_state["token"] = parsed | |
print("β Token successfully fetched from Bubble.") | |
else: | |
print("β Failed to fetch a valid token from Bubble.") | |
return check_token_status(new_state), new_state | |
def guarded_fetch_posts(token_state): | |
logging.info("Starting guarded_fetch_posts process.") | |
if not token_state or not token_state.get("token"): | |
logging.error("Access denied. No token available.") | |
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>" | |
client_id = token_state.get("client_id") | |
token_dict = token_state.get("token") | |
org_urn = token_state.get('org_urn') # Ensure 'org_urn' is correctly fetched from token_state | |
if not org_urn: | |
logging.error("Organization URN (org_urn) not found in token_state.") | |
return "<p style='color:red; text-align:center;'>β Configuration error: Organization URN missing.</p>" | |
if not client_id: | |
logging.error("Client ID not found in token_state.") | |
return "<p style='color:red; text-align:center;'>β Configuration error: Client ID missing.</p>" | |
try: | |
# Step 1: Fetch core post data (text, summary, category) and their basic stats | |
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}") | |
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn) | |
# org_name is returned as the third item, captured as _ if not used directly here | |
if not processed_raw_posts: | |
logging.info("No posts found to process after step 1.") | |
return "<p style='color:orange; text-align:center;'>βΉοΈ No posts found to process.</p>" | |
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")] | |
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.") | |
# Step 2: Fetch comments for these posts | |
logging.info("Step 2: Fetching comments.") | |
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map) | |
# Step 3: Analyze sentiment of the comments | |
logging.info("Step 3: Analyzing sentiment.") | |
sentiments_per_post = analyze_sentiment(all_comments_data) | |
# Step 4: Compile detailed post objects | |
logging.info("Step 4: Compiling detailed posts.") | |
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post) | |
# Step 5: Prepare data for Bubble | |
logging.info("Step 5: Preparing data for Bubble.") | |
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data) | |
# Step 6: Bulk upload to Bubble | |
logging.info("Step 6: Uploading data to Bubble.") | |
bulk_upload_to_bubble(li_posts, "LI_posts") | |
bulk_upload_to_bubble(li_post_stats, "LI_post_stats") | |
bulk_upload_to_bubble(li_post_comments, "LI_post_comments") | |
logging.info("Successfully fetched and uploaded posts and comments to Bubble.") | |
return "<p style='color:green; text-align:center;'>β Posts and comments uploaded to Bubble.</p>" | |
except ValueError as ve: # Catch specific errors like "Failed to fetch posts" | |
logging.error(f"ValueError during LinkedIn data processing: {ve}") | |
return f"<p style='color:red; text-align:center;'>β Error: {html.escape(str(ve))}</p>" | |
except Exception as e: | |
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback | |
return "<p style='color:red; text-align:center;'>β An unexpected error occurred. Please check logs.</p>" | |
def guarded_fetch_dashboard(token_state): | |
if not token_state or not token_state.get("token"): | |
return "<p style='color:red; text-align:center;'>β Access denied. No token available.</p>" | |
return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token")) | |
def guarded_fetch_analytics(token_state): | |
if not token_state or not token_state.get("token"): | |
return ("<p style='color:red; text-align:center;'>β Access denied. No token available.</p>", | |
None, None, None, None, None, None, None) | |
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token")) | |
def run_mentions_and_load(token_state): | |
if not token_state or not token_state.get("token"): | |
return ("<p style='color:red; text-align:center;'>β Access denied. No token available.</p>", None) | |
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token")) | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), | |
title="LinkedIn Post Viewer & Analytics") as app: | |
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None}) | |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics") | |
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.") | |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False) | |
status_box = gr.Textbox(label="Overall Token Status", interactive=False) | |
org_urn = gr.Textbox(visible=False) # Needed for input, was missing from initial script | |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn]) | |
url_user_token_display.change( | |
fn=process_and_store_bubble_token, | |
inputs=[url_user_token_display, org_urn, token_state], | |
outputs=[status_box, token_state] | |
) | |
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box) | |
gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box) | |
with gr.Tabs(): | |
with gr.TabItem("1οΈβ£ Dashboard"): | |
gr.Markdown("View your organization's recent posts and their engagement statistics.") | |
sync_posts_to_bubble_btn = gr.Button("π Fetch, Analyze & Store Posts to Bubble", variant="primary") | |
dashboard_html_output = gr.HTML("<p style='text-align: center; color: #555;'>Click the button to fetch posts and store them in Bubble. Status will appear here.</p>") | |
# Corrected: The click handler now calls guarded_fetch_posts | |
# and dashboard_html_output is correctly defined in this scope. | |
sync_posts_to_bubble_btn.click( | |
fn=guarded_fetch_posts, | |
inputs=[token_state], | |
outputs=[dashboard_html_output] | |
) | |
with gr.TabItem("2οΈβ£ Analytics"): | |
gr.Markdown("View follower count and monthly gains for your organization.") | |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary") | |
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>") | |
with gr.Row(): | |
follower_plot, growth_plot = gr.Plot(), gr.Plot() | |
with gr.Row(): | |
eng_rate_plot = gr.Plot() | |
with gr.Row(): | |
interaction_plot = gr.Plot() | |
with gr.Row(): | |
eb_plot = gr.Plot() | |
with gr.Row(): | |
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot() | |
fetch_analytics_btn.click( | |
fn=guarded_fetch_analytics, | |
inputs=[token_state], | |
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot, | |
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot] | |
) | |
with gr.TabItem("3οΈβ£ Mentions"): | |
gr.Markdown("Analyze sentiment of recent posts that mention your organization.") | |
fetch_mentions_btn = gr.Button("π§ Fetch Mentions & Sentiment", variant="primary") | |
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>") | |
mentions_plot = gr.Plot() | |
fetch_mentions_btn.click( | |
fn=run_mentions_and_load, | |
inputs=[token_state], | |
outputs=[mentions_html, mentions_plot] | |
) | |
if __name__ == "__main__": | |
if not os.environ.get("Linkedin_client_id"): | |
print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.") | |
app.launch(server_name="0.0.0.0", server_port=7860, share=True) | |