LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
4a9a646 verified
raw
history blame
10.1 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os
import logging
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
from Bubble_API_Calls import fetch_linkedin_token_from_bubble, bulk_upload_to_bubble
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment,
compile_detailed_posts,
prepare_data_for_bubble
)
def check_token_status(token_state):
return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None}
new_state.update({"token": None, "org_urn": org_urn})
client_id = os.environ.get("Linkedin_client_id")
if not client_id:
print("❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
new_state["client_id"] = "ENV VAR MISSING"
return check_token_status(new_state), new_state
new_state["client_id"] = client_id
if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token:
return check_token_status(new_state), new_state
print(f"Attempting to fetch token from Bubble with user token: {url_user_token}")
parsed = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed, dict) and "access_token" in parsed:
new_state["token"] = parsed
print("βœ… Token successfully fetched from Bubble.")
else:
print("❌ Failed to fetch a valid token from Bubble.")
return check_token_status(new_state), new_state
def guarded_fetch_posts(token_state):
logging.info("Starting guarded_fetch_posts process.")
if not token_state or not token_state.get("token"):
logging.error("Access denied. No token available.")
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn') # Ensure 'org_urn' is correctly fetched from token_state
if not org_urn:
logging.error("Organization URN (org_urn) not found in token_state.")
return "<p style='color:red; text-align:center;'>❌ Configuration error: Organization URN missing.</p>"
if not client_id:
logging.error("Client ID not found in token_state.")
return "<p style='color:red; text-align:center;'>❌ Configuration error: Client ID missing.</p>"
try:
# Step 1: Fetch core post data (text, summary, category) and their basic stats
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn}")
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
# org_name is returned as the third item, captured as _ if not used directly here
if not processed_raw_posts:
logging.info("No posts found to process after step 1.")
return "<p style='color:orange; text-align:center;'>ℹ️ No posts found to process.</p>"
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
# Step 2: Fetch comments for these posts
logging.info("Step 2: Fetching comments.")
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
# Step 3: Analyze sentiment of the comments
logging.info("Step 3: Analyzing sentiment.")
sentiments_per_post = analyze_sentiment(all_comments_data)
# Step 4: Compile detailed post objects
logging.info("Step 4: Compiling detailed posts.")
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
# Step 5: Prepare data for Bubble
logging.info("Step 5: Preparing data for Bubble.")
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
# Step 6: Bulk upload to Bubble
logging.info("Step 6: Uploading data to Bubble.")
bulk_upload_to_bubble(li_posts, "LI_posts")
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
logging.info("Successfully fetched and uploaded posts and comments to Bubble.")
return "<p style='color:green; text-align:center;'>βœ… Posts and comments uploaded to Bubble.</p>"
except ValueError as ve: # Catch specific errors like "Failed to fetch posts"
logging.error(f"ValueError during LinkedIn data processing: {ve}")
return f"<p style='color:red; text-align:center;'>❌ Error: {html.escape(str(ve))}</p>"
except Exception as e:
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback
return "<p style='color:red; text-align:center;'>❌ An unexpected error occurred. Please check logs.</p>"
def guarded_fetch_dashboard(token_state):
if not token_state or not token_state.get("token"):
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
def guarded_fetch_analytics(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
def run_mentions_and_load(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None})
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
org_urn = gr.Textbox(visible=False) # Needed for input, was missing from initial script
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn])
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn, token_state],
outputs=[status_box, token_state]
)
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
sync_posts_to_bubble_btn = gr.Button("πŸ”„ Fetch, Analyze & Store Posts to Bubble", variant="primary")
dashboard_html_output = gr.HTML("<p style='text-align: center; color: #555;'>Click the button to fetch posts and store them in Bubble. Status will appear here.</p>")
# Corrected: The click handler now calls guarded_fetch_posts
# and dashboard_html_output is correctly defined in this scope.
sync_posts_to_bubble_btn.click(
fn=guarded_fetch_posts,
inputs=[token_state],
outputs=[dashboard_html_output]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row():
eng_rate_plot = gr.Plot()
with gr.Row():
interaction_plot = gr.Plot()
with gr.Row():
eb_plot = gr.Plot()
with gr.Row():
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot()
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.")
app.launch(server_name="0.0.0.0", server_port=7860, share=True)