LinkedinMonitor / linkedin_follower_stats.py
GuglielmoTor's picture
Create linkedin_follower_stats.py
7c999dd verified
raw
history blame
16.2 kB
# -- coding: utf-8 --
import json
import requests
import logging
from datetime import datetime, timezone
from dateutil.relativedelta import relativedelta # For robust month arithmetic
from urllib.parse import quote
# Assuming you have a sessions.py with create_session
# If sessions.py or create_session is not found, it will raise an ImportError,
# which is appropriate for a module that depends on it.
from sessions import create_session
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
API_V2_BASE = 'https://api.linkedin.com/v2'
API_REST_BASE = "https://api.linkedin.com/rest"
LINKEDIN_API_VERSION = "202502" # As per user's example for follower stats
# --- ID to Name Mapping Helper Functions ---
def _fetch_linkedin_names(session, url, params, result_key_path, name_key_path, id_key="id"):
"""
Generic helper to fetch and map IDs to names from a LinkedIn API endpoint.
result_key_path: list of keys to navigate to the list of items (e.g., ["elements"])
name_key_path: list of keys to navigate to the name within an item (e.g., ["name", "localized", "en_US"])
Revised: Removed locale_needed parameter; calling functions should provide locale in params if required.
"""
mapping = {}
try:
logging.debug(f"Fetching names from URL: {url} with params: {params}")
response = session.get(url, params=params)
response.raise_for_status()
data = response.json()
items = data
for key in result_key_path: # Navigate to the list/dict of items
if isinstance(items, dict):
items = items.get(key, []) # Default to empty list if key not found
else: # If items is already not a dict
logging.warning(f"Expected dict to get key '{key}' but got {type(items)} at path {result_key_path} for URL {url}. Check result_key_path.")
return mapping # Cannot proceed with this path
if isinstance(items, dict): # For batch responses like geo/industry (where keys are IDs)
for item_id_str, item_data in items.items():
name = item_data
for key_nav in name_key_path: # Navigate to the name string
if isinstance(name, dict):
name = name.get(key_nav)
else:
name = None # Path broken
break
if name:
mapping[item_id_str] = name
else:
logging.warning(f"No name found for ID {item_id_str} at path {name_key_path} in item: {item_data} from URL {url}")
elif isinstance(items, list): # For list responses like functions/seniorities
for item in items:
item_id_val = item.get(id_key)
name = item
for key_nav in name_key_path: # Navigate to the name string
if isinstance(name, dict):
name = name.get(key_nav)
else:
name = None # Path broken
break
if item_id_val is not None and name:
mapping[str(item_id_val)] = name # Ensure ID is string for consistency
else:
logging.warning(f"No ID ('{id_key}') or name found at path {name_key_path} in item: {item} from URL {url}")
else:
logging.warning(f"Expected list or dict of items at {result_key_path} from URL {url}, got {type(items)}")
except requests.exceptions.RequestException as e:
status_code = getattr(e.response, 'status_code', 'N/A')
error_text = getattr(e.response, 'text', str(e))
logging.error(f"Error fetching names from {url} (Status: {status_code}): {error_text}")
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON for names from {url}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
except Exception as e:
logging.error(f"Unexpected error fetching names from {url}: {e}", exc_info=True)
return mapping
def get_functions_map(session):
"""Fetches all LinkedIn functions and returns a map of {id: name}."""
url = f"{API_V2_BASE}/functions"
params = {'locale': 'en_US'}
logging.info("Fetching all LinkedIn functions.")
return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")
def get_seniorities_map(session):
"""Fetches all LinkedIn seniorities and returns a map of {id: name}."""
url = f"{API_V2_BASE}/seniorities"
params = {'locale': 'en_US'}
logging.info("Fetching all LinkedIn seniorities.")
return _fetch_linkedin_names(session, url, params, ["elements"], ["name", "localized", "en_US"], "id")
def get_industries_map(session, industry_urns, version="DEFAULT"):
"""Fetches names for a list of industry URNs. Returns a map {id: name}."""
if not industry_urns: return {}
industry_ids = [_parse_urn_to_id(urn) for urn in industry_urns if urn]
unique_ids = list(set(filter(None, industry_ids))) # Filter out None IDs from parsing
if not unique_ids: return {}
url = f"{API_V2_BASE}/industryTaxonomyVersions/{version}/industries"
# LinkedIn API for batch industries expects ids as repeated query parameters: ids=1&ids=23
# The requests library handles lists in params by creating repeated query parameters.
params = {'ids': unique_ids, 'locale.language': 'en', 'locale.country': 'US'}
logging.info(f"Fetching names for {len(unique_ids)} unique industry IDs.")
return _fetch_linkedin_names(session, url, params, ["results"], ["name", "localized", "en_US"])
def get_geo_map(session, geo_urns):
"""Fetches names for a list of geo URNs. Returns a map {id: name}."""
if not geo_urns: return {}
geo_ids = [_parse_urn_to_id(urn) for urn in geo_urns if urn]
unique_ids = list(set(filter(None, geo_ids)))
if not unique_ids: return {}
# API expects ids=List(123,456) format in query string.
ids_param_value = "List(" + ",".join(map(str,unique_ids)) + ")" # Ensure IDs are strings
# Parameters are embedded in the URL for this specific format
# Note: locale params are added here directly as part of the URL construction for this specific endpoint style.
url = f"{API_V2_BASE}/geo?ids={quote(ids_param_value)}&locale.language=en&locale.country=US"
logging.info(f"Fetching names for {len(unique_ids)} unique geo IDs using URL: {url}")
# Params dict is empty as all params are in the URL string for this call.
return _fetch_linkedin_names(session, url, {}, ["results"], ["defaultLocalizedName", "value"])
def _parse_urn_to_id(urn_string):
"""Helper to get the last part (ID) from a URN string."""
if not isinstance(urn_string, str):
logging.warning(f"Invalid URN type: {type(urn_string)}, value: {urn_string}")
return None
try:
return urn_string.split(':')[-1]
except IndexError: # Handle cases where split doesn't yield enough parts
logging.warning(f"Could not parse ID from URN: {urn_string}")
return None
except Exception as e:
logging.error(f"Unexpected error parsing URN {urn_string}: {e}")
return None
# --- Follower Data Fetching Functions ---
def fetch_monthly_follower_gains(session, org_urn):
"""
Fetches monthly follower gains for the last 12-13 months to ensure full coverage.
"""
results = []
now = datetime.now(timezone.utc)
# Go back 13 months to ensure we capture at least 12 full previous months
thirteen_months_ago = now - relativedelta(months=13)
start_of_period = thirteen_months_ago.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
start_ms = int(start_of_period.timestamp() * 1000)
url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity"
f"&organizationalEntity={quote(org_urn)}"
f"&timeIntervals.timeGranularityType=MONTH"
f"&timeIntervals.timeRange.start={start_ms}"
)
logging.info(f"Fetching monthly follower gains from: {url}")
try:
response = session.get(url)
response.raise_for_status()
data = response.json()
for item in data.get("elements", []):
time_range = item.get("timeRange", {})
start_timestamp_ms = time_range.get("start")
if start_timestamp_ms is None:
logging.warning("Skipping item due to missing start timestamp in monthly gains.")
continue
date_obj = datetime.fromtimestamp(start_timestamp_ms / 1000, tz=timezone.utc)
date_str = date_obj.strftime('%Y-%m-%d') # First day of the month
follower_gains = item.get("followerGains", {})
organic_gain = follower_gains.get("organicFollowerGain", 0)
paid_gain = follower_gains.get("paidFollowerGain", 0)
results.append({
"category_name": date_str,
"follower_count_organic": organic_gain,
"follower_count_paid": paid_gain,
"follower_count_type": "follower_gains_monthly",
"organization_urn": org_urn # Add org_urn for consistency
})
logging.info(f"Fetched {len(results)} monthly follower gain entries for org URN {org_urn}.")
except requests.exceptions.RequestException as e:
status_code = getattr(e.response, 'status_code', 'N/A')
error_text = getattr(e.response, 'text', str(e))
logging.error(f"Error fetching monthly follower gains for {org_urn} (Status: {status_code}): {error_text}")
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON for monthly follower gains for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
except Exception as e:
logging.error(f"Unexpected error fetching monthly follower gains for {org_urn}: {e}", exc_info=True)
return results
def fetch_follower_demographics(session, org_urn, functions_map, seniorities_map):
"""
Fetches current follower demographics (seniority, industry, function, geo, association).
"""
results = []
url = (
f"{API_REST_BASE}/organizationalEntityFollowerStatistics"
f"?q=organizationalEntity&organizationalEntity={quote(org_urn)}"
)
logging.info(f"Fetching follower demographics from: {url} for org URN {org_urn}")
try:
response = session.get(url)
response.raise_for_status()
data = response.json()
elements = data.get("elements", [])
if not elements:
logging.warning(f"No elements found in follower demographics response for {org_urn}.")
return []
stat_element = elements[0] # Data is usually in the first element
# Collect URNs for batch mapping
industry_urns_to_map = [item.get("industry") for item in stat_element.get("followerCountsByIndustry", []) if item.get("industry")]
geo_urns_to_map = [item.get("geo") for item in stat_element.get("followerCountsByGeoCountry", []) if item.get("geo")]
industries_map = get_industries_map(session, industry_urns_to_map)
geo_map = get_geo_map(session, geo_urns_to_map)
# Helper to create demographic entries
def _add_demographic_entry(items_list, type_name, id_map, id_field_name, org_urn_val):
if not items_list:
logging.info(f"No items found for demographic type '{type_name}' for org {org_urn_val}.")
return
for item in items_list:
category_name_val = "Unknown"
if type_name == "follower_association": # associationType is directly the name
category_name_val = item.get("associationType", f"Unknown AssociationType")
else: # For URN-based categories
urn_val = item.get(id_field_name)
entity_id = _parse_urn_to_id(urn_val)
category_name_val = id_map.get(str(entity_id), f"Unknown {type_name.split('_')[-1].capitalize()} (ID: {entity_id if entity_id else urn_val})")
counts = item.get("followerCounts", {})
results.append({
"category_name": category_name_val,
"follower_count_organic": counts.get("organicFollowerCount", 0),
"follower_count_paid": counts.get("paidFollowerCount", 0),
"follower_count_type": type_name,
"organization_urn": org_urn_val
})
_add_demographic_entry(stat_element.get("followerCountsByAssociationType", []), "follower_association", {}, "associationType", org_urn)
_add_demographic_entry(stat_element.get("followerCountsBySeniority", []), "follower_seniority", seniorities_map, "seniority", org_urn)
_add_demographic_entry(stat_element.get("followerCountsByFunction", []), "follower_function", functions_map, "function", org_urn)
_add_demographic_entry(stat_element.get("followerCountsByIndustry", []), "follower_industry", industries_map, "industry", org_urn)
_add_demographic_entry(stat_element.get("followerCountsByGeoCountry", []), "follower_geo", geo_map, "geo", org_urn)
logging.info(f"Processed follower demographics for {org_urn}. Total entries from this type: {len(results)}")
except requests.exceptions.RequestException as e:
status_code = getattr(e.response, 'status_code', 'N/A')
error_text = getattr(e.response, 'text', str(e))
logging.error(f"Error fetching follower demographics for {org_urn} (Status: {status_code}): {error_text}")
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON for follower demographics for {org_urn}: {e}. Response: {response.text if 'response' in locals() else 'N/A'}")
except Exception as e:
logging.error(f"Unexpected error fetching follower demographics for {org_urn}: {e}", exc_info=True)
return results
# --- Main Orchestration Function ---
def get_linkedin_follower_stats(comm_client_id, community_token, org_urn):
"""
Main function to fetch all follower statistics (monthly gains and demographics)
and format them for Bubble.
"""
if not all([comm_client_id, community_token, org_urn]):
logging.error("Client ID, token, or Organization URN is missing for get_linkedin_follower_stats.")
return []
token_dict = community_token if isinstance(community_token, dict) else {'access_token': community_token, 'token_type': 'Bearer'}
session = None # Initialize session to None
try:
session = create_session(comm_client_id, token=token_dict)
session.headers.update({
"X-Restli-Protocol-Version": "2.0.0",
"LinkedIn-Version": LINKEDIN_API_VERSION
})
except Exception as e:
logging.error(f"Failed to create session or update headers for org {org_urn}: {e}", exc_info=True)
return [] # Cannot proceed without a session
logging.info(f"Starting follower stats retrieval for org: {org_urn}")
# These maps are fetched once per call to get_linkedin_follower_stats
functions_map = get_functions_map(session)
seniorities_map = get_seniorities_map(session)
if not functions_map: logging.warning(f"Functions map is empty for org {org_urn}. Function names might not be resolved.")
if not seniorities_map: logging.warning(f"Seniorities map is empty for org {org_urn}. Seniority names might not be resolved.")
all_follower_data = []
monthly_gains = fetch_monthly_follower_gains(session, org_urn)
all_follower_data.extend(monthly_gains)
demographics = fetch_follower_demographics(session, org_urn, functions_map, seniorities_map)
all_follower_data.extend(demographics)
logging.info(f"Successfully compiled {len(all_follower_data)} total follower stat entries for {org_urn}.")
return all_follower_data