LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
b0464a9 verified
raw
history blame
6.16 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
def check_token_status(token_state):
return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None}
new_state.update({"token": None, "org_urn": org_urn})
client_id = os.environ.get("Linkedin_client_id")
if not client_id:
print("❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
new_state["client_id"] = "ENV VAR MISSING"
return check_token_status(new_state), new_state
new_state["client_id"] = client_id
if not url_user_token or "not found" in url_user_token or "Could not access" in url_user_token:
return check_token_status(new_state), new_state
print(f"Attempting to fetch token from Bubble with user token: {url_user_token}")
parsed = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed, dict) and "access_token" in parsed:
new_state["token"] = parsed
print("βœ… Token successfully fetched from Bubble.")
else:
print("❌ Failed to fetch a valid token from Bubble.")
return check_token_status(new_state), new_state
def guarded_fetch_dashboard(token_state):
if not token_state or not token_state.get("token"):
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
return fetch_and_render_dashboard(token_state.get("client_id"), token_state.get("token"))
def guarded_fetch_analytics(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
def run_mentions_and_load(token_state):
if not token_state or not token_state.get("token"):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None})
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall Token Status", interactive=False)
org_urn = gr.Textbox(visible=False) # Needed for input, was missing from initial script
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn])
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn, token_state],
outputs=[status_box, token_state]
)
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
gr.Timer(5.0).tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(fn=guarded_fetch_dashboard, inputs=[token_state], outputs=[dashboard_html])
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row():
eng_rate_plot = gr.Plot()
with gr.Row():
interaction_plot = gr.Plot()
with gr.Row():
eb_plot = gr.Plot()
with gr.Row():
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot()
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.")
app.launch(server_name="0.0.0.0", server_port=7860, share=True)