LinkedinMonitor / services /report_data_handler.py
GuglielmoTor's picture
Update services/report_data_handler.py
3fb0aa4 verified
raw
history blame
20.2 kB
# services/report_data_handler.py
import pandas as pd
import logging
from apis.Bubble_API_Calls import fetch_linkedin_posts_data_from_bubble, bulk_upload_to_bubble
from config import (
BUBBLE_REPORT_TABLE_NAME,
BUBBLE_OKR_TABLE_NAME,
BUBBLE_KEY_RESULTS_TABLE_NAME,
BUBBLE_TASKS_TABLE_NAME,
BUBBLE_KR_UPDATE_TABLE_NAME,
)
import json # For handling JSON data
from typing import List, Dict, Any, Optional, Tuple
from datetime import date
# It's good practice to configure the logger at the application entry point,
# but setting a default handler here prevents "No handler found" warnings.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
"""
Fetches all agentic analysis data for a given org_urn from Bubble.
Returns the full dataframe and any error message, or None, None.
"""
logger.info(f"Starting fetch_latest_agentic_analysis for org_urn: {org_urn}")
today = date.today()
current_year = today.year
current_quarter = (today.month - 1) // 3 + 1
if not org_urn:
logger.warning("fetch_latest_agentic_analysis: org_urn is missing.")
return None, "org_urn is missing."
additional_constraint = [
{"key": 'quarter', "constraint_type": "equals", "value": current_quarter},
{"key": 'year', "constraint_type": "equals", "value": current_year}
]
try:
report_data_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_REPORT_TABLE_NAME,
constraint_value=org_urn,
constraint_key='organization_urn',
constraint_type = 'equals'
)
if error:
logger.error(f"Error fetching data from Bubble for org_urn {org_urn}: {error}")
return None, str(error)
if report_data_df is None or report_data_df.empty:
logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.")
return None, None
logger.info(f"Successfully fetched {len(report_data_df)} records for org_urn {org_urn}")
return report_data_df, None # Return full dataframe and no error
except Exception as e:
logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}")
return None, str(e)
def save_report_results(
org_urn: str,
report_markdown: str,
quarter: int,
year: int,
report_type: str,
) -> Optional[str]:
"""Saves the agentic pipeline results to Bubble. Returns the new record ID or None."""
logger.info(f"Starting save_report_results for org_urn: {org_urn}")
if not org_urn:
logger.error("Cannot save agentic results: org_urn is missing.")
return None
try:
payload = {
"organization_urn": org_urn,
"report_text": report_markdown if report_markdown else "N/A",
"quarter": quarter,
"year": year,
"report_type": report_type,
}
logger.info(f"Attempting to save agentic analysis to Bubble for org_urn: {org_urn}")
response = bulk_upload_to_bubble([payload], BUBBLE_REPORT_TABLE_NAME)
# Handle API response which could be a list of dicts (for bulk) or a single dict.
if response and isinstance(response, list) and len(response) > 0 and isinstance(response[0], dict) and 'id' in response[0]:
record_id = response[0]['id'] # Get the ID from the first dictionary in the list
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
return record_id
elif response and isinstance(response, dict) and "id" in response: # Handle non-bulk response
record_id = response["id"]
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}")
return record_id
else:
# Catches None, False, empty lists, or other unexpected formats.
logger.error(f"Failed to save agentic analysis to Bubble. Unexpected API Response: {response}")
return None
except Exception as e:
logger.exception(f"An unexpected error occurred in save_report_results for org_urn {org_urn}: {e}")
return None
# --- Data Saving Functions ---
def save_objectives(
org_urn: str,
report_id: str,
objectives_data: List[Dict[str, Any]]
) -> Optional[List[str]]:
"""
Saves Objective records to Bubble.
Returns a list of the newly created Bubble record IDs for the objectives, or None on failure.
"""
logger.info(f"Starting save_objectives for report_id: {report_id}")
if not objectives_data:
logger.info("No objectives to save.")
return []
try:
payloads = []
for obj in objectives_data:
timeline = obj.get("objective_timeline")
payloads.append({
"description": obj.get("objective_description"),
# FIX: Convert Enum to its value before sending.
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
"owner": obj.get("objective_owner"),
"report": report_id,
})
logger.info(f"Attempting to save {payloads} objectives for report_id: {report_id}")
response_data = bulk_upload_to_bubble(payloads, BUBBLE_OKR_TABLE_NAME)
# Validate response and extract IDs from the list of dictionaries.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save objectives. API response was not a list: {response_data}")
return None
try:
# Extract the ID from each dictionary in the response list.
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from API response. Response format invalid: {response_data}", exc_info=True)
return None
# Check if we extracted the expected number of IDs
if len(extracted_ids) != len(payloads):
logger.error(f"Failed to save all objectives for report_id: {report_id}. "
f"Expected {len(payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} objectives.")
return extracted_ids
except Exception as e:
logger.exception(f"An unexpected error occurred in save_objectives for report_id {report_id}: {e}")
return None
def save_key_results(
org_urn: str,
objectives_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[Tuple[Dict[str, Any], str]]]:
"""
Saves Key Result records to Bubble, linking them to their parent objectives.
Returns a list of tuples containing the original key result data and its new Bubble ID, or None on failure.
"""
logger.info(f"Starting save_key_results for {len(objectives_with_ids)} objectives.")
key_result_payloads = []
# This list preserves the original KR data in the correct order to match the returned IDs
key_results_to_process = []
if not objectives_with_ids:
logger.info("No objectives provided to save_key_results.")
return []
try:
for objective_data, parent_objective_id in objectives_with_ids:
# Defensive check to ensure the parent_objective_id is a valid-looking string.
if not isinstance(parent_objective_id, str) or not parent_objective_id:
logger.error(f"Invalid parent_objective_id found: '{parent_objective_id}'. Skipping KRs for this objective.")
continue # Skip this loop iteration
for kr in objective_data.get("key_results", []):
kr_type = kr.get("key_result_type")
key_results_to_process.append(kr)
key_result_payloads.append({
"okr": parent_objective_id,
"description": kr.get("key_result_description"),
"target_metric": kr.get("target_metric"),
"target_value": kr.get("target_value"),
# FIX: Convert Enum to its value before sending.
"kr_type": kr_type.value if hasattr(kr_type, 'value') else kr_type,
"data_subject": kr.get("data_subject"),
})
if not key_result_payloads:
logger.info("No key results to save.")
return []
logger.info(f"Attempting to save {key_result_payloads} key results for org_urn: {org_urn}")
response_data = bulk_upload_to_bubble(key_result_payloads, BUBBLE_KEY_RESULTS_TABLE_NAME)
# Validate response and extract IDs.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save key results. API response was not a list: {response_data}")
return None
try:
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from key result API response: {response_data}", exc_info=True)
return None
if len(extracted_ids) != len(key_result_payloads):
logger.error(f"Failed to save all key results for org_urn: {org_urn}. "
f"Expected {len(key_result_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} key results.")
return list(zip(key_results_to_process, extracted_ids))
except Exception as e:
logger.exception(f"An unexpected error occurred in save_key_results for org_urn {org_urn}: {e}")
return None
def save_tasks(
org_urn: str,
key_results_with_ids: List[Tuple[Dict[str, Any], str]]
) -> Optional[List[str]]:
"""
Saves Task records to Bubble, linking them to their parent key results.
Returns a list of the newly created Bubble record IDs for the tasks, or None on failure.
"""
logger.info(f"Starting save_tasks for {len(key_results_with_ids)} key results.")
if not key_results_with_ids:
logger.info("No key results provided to save_tasks.")
return []
try:
task_payloads = []
for key_result_data, parent_key_result_id in key_results_with_ids:
for task in key_result_data.get("tasks", []):
priority = task.get("priority")
effort = task.get("effort")
timeline = task.get("timeline")
task_payloads.append({
"key_result": parent_key_result_id,
"description": task.get("task_description"),
"deliverable": task.get("objective_deliverable"),
"category": task.get("task_category"),
# FIX: Convert Enum to its value before sending.
"priority": priority.value if hasattr(priority, 'value') else priority,
"priority_justification": task.get("priority_justification"),
"effort": effort.value if hasattr(effort, 'value') else effort,
"timeline": timeline.value if hasattr(timeline, 'value') else timeline,
"responsible_party": task.get("responsible_party"),
"success_criteria_metrics": task.get("success_criteria_metrics"),
"dependencies": task.get("dependencies_prerequisites"),
"why": task.get("why_proposed"),
})
if not task_payloads:
logger.info("No tasks to save.")
return []
logger.info(f"Attempting to save {task_payloads} tasks for org_urn: {org_urn}")
response_data = bulk_upload_to_bubble(task_payloads, BUBBLE_TASKS_TABLE_NAME)
# Validate response and extract IDs.
if not response_data or not isinstance(response_data, list):
logger.error(f"Failed to save tasks. API response was not a list: {response_data}")
return None
try:
extracted_ids = [item['id'] for item in response_data]
except (TypeError, KeyError):
logger.error(f"Failed to parse IDs from task API response: {response_data}", exc_info=True)
return None
if len(extracted_ids) != len(task_payloads):
logger.error(f"Failed to save all tasks for org_urn: {org_urn}. "
f"Expected {len(task_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}")
return None
logger.info(f"Successfully saved {len(extracted_ids)} tasks.")
return extracted_ids
except Exception as e:
logger.exception(f"An unexpected error occurred in save_tasks for org_urn {org_urn}: {e}")
return None
# --- Orchestrator Function ---
def save_actionable_okrs(org_urn: str, actionable_okrs: Dict[str, Any], report_id: str):
"""
Orchestrates the sequential saving of objectives, key results, and tasks.
"""
logger.info(f"--- Starting OKR save process for org_urn: {org_urn}, report_id: {report_id} ---")
try:
objectives_data = actionable_okrs.get("okrs", [])
# Defensive check: If data is a string, try to parse it as JSON.
if isinstance(objectives_data, str):
logger.warning("The 'okrs' data is a string. Attempting to parse as JSON.")
try:
objectives_data = json.loads(objectives_data)
logger.info("Successfully parsed 'okrs' data from JSON string.")
except json.JSONDecodeError:
logger.error("Failed to parse 'okrs' data. The string is not valid JSON.", exc_info=True)
return # Abort if data is malformed
if not objectives_data:
logger.warning(f"No OKRs found in the input for org_urn: {org_urn}. Aborting save process.")
return
# Step 1: Save the top-level objectives
objective_ids = save_objectives(org_urn, report_id, objectives_data)
if objective_ids is None:
logger.error("OKR save process aborted due to failure in saving objectives.")
return
# Combine the original objective data with their new IDs for the next step
objectives_with_ids = list(zip(objectives_data, objective_ids))
# Step 2: Save the key results, linking them to the objectives
key_results_with_ids = save_key_results(org_urn, objectives_with_ids)
if key_results_with_ids is None:
logger.error("OKR save process aborted due to failure in saving key results.")
return
# Step 3: Save the tasks, linking them to the key results
task_ids = save_tasks(org_urn, key_results_with_ids)
if task_ids is None:
logger.error("Task saving failed, but objectives and key results were saved.")
# For now, we just log the error and complete.
return
logger.info(f"--- OKR save process completed successfully for org_urn: {org_urn} ---")
except Exception as e:
logger.exception(f"An unhandled exception occurred during the save_actionable_okrs orchestration for org_urn {org_urn}: {e}")
def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[Dict[str, Any]]:
"""
Fetches the latest report, OKRs, Key Results, and Tasks from Bubble for a given organization
and reconstructs them into the nested structure expected by the application.
Args:
org_urn: The URN of the organization.
Returns:
A dictionary containing the reconstructed data ('report_str', 'actionable_okrs', etc.)
or None if the report is not found or an error occurs.
"""
# logger.info(f"Starting data fetch and reconstruction for org_urn: {org_urn}")
# try:
# # 1. Fetch the latest report for the organization
# # We add a sort field to get the most recent one.
# report_df, error = fetch_linkedin_posts_data_from_bubble(
# data_type=BUBBLE_REPORT_TABLE_NAME,
# org_urn=org_urn,
# constraint_key="organization_urn"
# )
# if error or report_df is None or report_df.empty:
# logger.error(f"Could not fetch latest report for org_urn {org_urn}. Error: {error}")
# return None
logger.info(f"Starting data fetch and reconstruction")
try:
# Get the most recent report (assuming the first one is the latest)
latest_report = report_df.iloc[0]
report_id = latest_report.get('_id')
if not report_id:
logger.error("Fetched report is missing a Bubble '_id'.")
return None
logger.info(f"Fetched latest report with ID: {report_id}")
# 2. Fetch all related OKRs using the report_id
okrs_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_OKR_TABLE_NAME,
constraint_value=str(report_id),
constraint_key='report',
constraint_type = 'equals'
)
if error:
logger.error(f"Error fetching OKRs for report_id {report_id}: {error}")
okrs_df = pd.DataFrame()
logger.info(f" okr_df {okrs_df}")
# 3. Fetch all related Key Results using the OKR IDs
okr_ids = okrs_df['_id'].tolist() if not okrs_df.empty else []
logger.info(f" retrieved {len(okr_ids)} okr ID: {okr_ids}")
krs_df = pd.DataFrame()
if okr_ids:
krs_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_KEY_RESULTS_TABLE_NAME,
constraint_value=okr_ids,
constraint_key='okr',
constraint_type='in'
)
if error:
logger.error(f"Error fetching Key Results for OKR IDs {okr_ids}: {error}")
krs_df = pd.DataFrame()
# 4. Fetch all related Tasks using the Key Result IDs
kr_ids = krs_df['_id'].tolist() if not krs_df.empty else []
tasks_df = pd.DataFrame()
if kr_ids:
tasks_df, error = fetch_linkedin_posts_data_from_bubble(
data_type=BUBBLE_TASKS_TABLE_NAME,
constraint_value=kr_ids,
constraint_key='key_result',
constraint_type='in'
)
if error:
logger.error(f"Error fetching Tasks for KR IDs {kr_ids}: {error}")
tasks_df = pd.DataFrame()
# 5. Reconstruct the nested 'actionable_okrs' dictionary
tasks_by_kr_id = tasks_df.groupby('key_result').apply(lambda x: x.to_dict('records')).to_dict()
krs_by_okr_id = krs_df.groupby('okr').apply(lambda x: x.to_dict('records')).to_dict()
reconstructed_okrs = []
for okr_data in okrs_df.to_dict('records'):
okr_id = okr_data['_id']
key_results_list = krs_by_okr_id.get(okr_id, [])
for kr_data in key_results_list:
kr_id = kr_data['_id']
# Attach tasks to each key result
kr_data['tasks'] = tasks_by_kr_id.get(kr_id, [])
# Attach key results to the objective
okr_data['key_results'] = key_results_list
reconstructed_okrs.append(okr_data)
actionable_okrs = {"okrs": reconstructed_okrs}
return {
"report_str": latest_report.get("report_text", "Nessun report trovato."),
"quarter": latest_report.get("quarter"),
"year": latest_report.get("year"),
"actionable_okrs": actionable_okrs,
"report_id": report_id
}
except Exception as e:
logger.exception(f"An unexpected error occurred during data reconstruction for org_urn {org_urn}: {e}")
return None