Spaces:
Running
Running
# services/report_data_handler.py | |
import pandas as pd | |
import logging | |
from apis.Bubble_API_Calls import fetch_linkedin_posts_data_from_bubble, bulk_upload_to_bubble | |
from config import ( | |
BUBBLE_REPORT_TABLE_NAME, | |
BUBBLE_OKR_TABLE_NAME, | |
BUBBLE_KEY_RESULTS_TABLE_NAME, | |
BUBBLE_TASKS_TABLE_NAME, | |
BUBBLE_KR_UPDATE_TABLE_NAME, | |
) | |
import json # For handling JSON data | |
from typing import List, Dict, Any, Optional, Tuple | |
from datetime import date | |
# It's good practice to configure the logger at the application entry point, | |
# but setting a default handler here prevents "No handler found" warnings. | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def fetch_latest_agentic_analysis(org_urn: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]: | |
""" | |
Fetches all agentic analysis data for a given org_urn from Bubble. | |
Returns the full dataframe and any error message, or None, None. | |
""" | |
logger.info(f"Starting fetch_latest_agentic_analysis for org_urn: {org_urn}") | |
today = date.today() | |
current_year = today.year | |
current_quarter = (today.month - 1) // 3 + 1 | |
if not org_urn: | |
logger.warning("fetch_latest_agentic_analysis: org_urn is missing.") | |
return None, "org_urn is missing." | |
additional_constraint = [ | |
{"key": 'quarter', "constraint_type": "equals", "value": current_quarter}, | |
{"key": 'year', "constraint_type": "equals", "value": current_year} | |
] | |
try: | |
report_data_df, error = fetch_linkedin_posts_data_from_bubble( | |
data_type=BUBBLE_REPORT_TABLE_NAME, | |
constraint_value=org_urn, | |
constraint_key='organization_urn', | |
constraint_type = 'equals' | |
) | |
if error: | |
logger.error(f"Error fetching data from Bubble for org_urn {org_urn}: {error}") | |
return None, str(error) | |
if report_data_df is None or report_data_df.empty: | |
logger.info(f"No existing agentic analysis found in Bubble for org_urn {org_urn}.") | |
return None, None | |
logger.info(f"Successfully fetched {len(report_data_df)} records for org_urn {org_urn}") | |
return report_data_df, None # Return full dataframe and no error | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred in fetch_latest_agentic_analysis for org_urn {org_urn}: {e}") | |
return None, str(e) | |
def save_report_results( | |
org_urn: str, | |
report_markdown: str, | |
quarter: int, | |
year: int, | |
report_type: str, | |
) -> Optional[str]: | |
"""Saves the agentic pipeline results to Bubble. Returns the new record ID or None.""" | |
logger.info(f"Starting save_report_results for org_urn: {org_urn}") | |
if not org_urn: | |
logger.error("Cannot save agentic results: org_urn is missing.") | |
return None | |
try: | |
payload = { | |
"organization_urn": org_urn, | |
"report_text": report_markdown if report_markdown else "N/A", | |
"quarter": quarter, | |
"year": year, | |
"report_type": report_type, | |
} | |
logger.info(f"Attempting to save agentic analysis to Bubble for org_urn: {org_urn}") | |
response = bulk_upload_to_bubble([payload], BUBBLE_REPORT_TABLE_NAME) | |
# Handle API response which could be a list of dicts (for bulk) or a single dict. | |
if response and isinstance(response, list) and len(response) > 0 and isinstance(response[0], dict) and 'id' in response[0]: | |
record_id = response[0]['id'] # Get the ID from the first dictionary in the list | |
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}") | |
return record_id | |
elif response and isinstance(response, dict) and "id" in response: # Handle non-bulk response | |
record_id = response["id"] | |
logger.info(f"Successfully saved agentic analysis to Bubble. Record ID: {record_id}") | |
return record_id | |
else: | |
# Catches None, False, empty lists, or other unexpected formats. | |
logger.error(f"Failed to save agentic analysis to Bubble. Unexpected API Response: {response}") | |
return None | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred in save_report_results for org_urn {org_urn}: {e}") | |
return None | |
# --- Data Saving Functions --- | |
def save_objectives( | |
org_urn: str, | |
report_id: str, | |
objectives_data: List[Dict[str, Any]] | |
) -> Optional[List[str]]: | |
""" | |
Saves Objective records to Bubble. | |
Returns a list of the newly created Bubble record IDs for the objectives, or None on failure. | |
""" | |
logger.info(f"Starting save_objectives for report_id: {report_id}") | |
if not objectives_data: | |
logger.info("No objectives to save.") | |
return [] | |
try: | |
payloads = [] | |
for obj in objectives_data: | |
timeline = obj.get("objective_timeline") | |
payloads.append({ | |
"description": obj.get("objective_description"), | |
# FIX: Convert Enum to its value before sending. | |
"timeline": timeline.value if hasattr(timeline, 'value') else timeline, | |
"owner": obj.get("objective_owner"), | |
"report": report_id, | |
}) | |
logger.info(f"Attempting to save {payloads} objectives for report_id: {report_id}") | |
response_data = bulk_upload_to_bubble(payloads, BUBBLE_OKR_TABLE_NAME) | |
# Validate response and extract IDs from the list of dictionaries. | |
if not response_data or not isinstance(response_data, list): | |
logger.error(f"Failed to save objectives. API response was not a list: {response_data}") | |
return None | |
try: | |
# Extract the ID from each dictionary in the response list. | |
extracted_ids = [item['id'] for item in response_data] | |
except (TypeError, KeyError): | |
logger.error(f"Failed to parse IDs from API response. Response format invalid: {response_data}", exc_info=True) | |
return None | |
# Check if we extracted the expected number of IDs | |
if len(extracted_ids) != len(payloads): | |
logger.error(f"Failed to save all objectives for report_id: {report_id}. " | |
f"Expected {len(payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}") | |
return None | |
logger.info(f"Successfully saved {len(extracted_ids)} objectives.") | |
return extracted_ids | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred in save_objectives for report_id {report_id}: {e}") | |
return None | |
def save_key_results( | |
org_urn: str, | |
objectives_with_ids: List[Tuple[Dict[str, Any], str]] | |
) -> Optional[List[Tuple[Dict[str, Any], str]]]: | |
""" | |
Saves Key Result records to Bubble, linking them to their parent objectives. | |
Returns a list of tuples containing the original key result data and its new Bubble ID, or None on failure. | |
""" | |
logger.info(f"Starting save_key_results for {len(objectives_with_ids)} objectives.") | |
key_result_payloads = [] | |
# This list preserves the original KR data in the correct order to match the returned IDs | |
key_results_to_process = [] | |
if not objectives_with_ids: | |
logger.info("No objectives provided to save_key_results.") | |
return [] | |
try: | |
for objective_data, parent_objective_id in objectives_with_ids: | |
# Defensive check to ensure the parent_objective_id is a valid-looking string. | |
if not isinstance(parent_objective_id, str) or not parent_objective_id: | |
logger.error(f"Invalid parent_objective_id found: '{parent_objective_id}'. Skipping KRs for this objective.") | |
continue # Skip this loop iteration | |
for kr in objective_data.get("key_results", []): | |
kr_type = kr.get("key_result_type") | |
key_results_to_process.append(kr) | |
key_result_payloads.append({ | |
"okr": parent_objective_id, | |
"description": kr.get("key_result_description"), | |
"target_metric": kr.get("target_metric"), | |
"target_value": kr.get("target_value"), | |
# FIX: Convert Enum to its value before sending. | |
"kr_type": kr_type.value if hasattr(kr_type, 'value') else kr_type, | |
"data_subject": kr.get("data_subject"), | |
}) | |
if not key_result_payloads: | |
logger.info("No key results to save.") | |
return [] | |
logger.info(f"Attempting to save {key_result_payloads} key results for org_urn: {org_urn}") | |
response_data = bulk_upload_to_bubble(key_result_payloads, BUBBLE_KEY_RESULTS_TABLE_NAME) | |
# Validate response and extract IDs. | |
if not response_data or not isinstance(response_data, list): | |
logger.error(f"Failed to save key results. API response was not a list: {response_data}") | |
return None | |
try: | |
extracted_ids = [item['id'] for item in response_data] | |
except (TypeError, KeyError): | |
logger.error(f"Failed to parse IDs from key result API response: {response_data}", exc_info=True) | |
return None | |
if len(extracted_ids) != len(key_result_payloads): | |
logger.error(f"Failed to save all key results for org_urn: {org_urn}. " | |
f"Expected {len(key_result_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}") | |
return None | |
logger.info(f"Successfully saved {len(extracted_ids)} key results.") | |
return list(zip(key_results_to_process, extracted_ids)) | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred in save_key_results for org_urn {org_urn}: {e}") | |
return None | |
def save_tasks( | |
org_urn: str, | |
key_results_with_ids: List[Tuple[Dict[str, Any], str]] | |
) -> Optional[List[str]]: | |
""" | |
Saves Task records to Bubble, linking them to their parent key results. | |
Returns a list of the newly created Bubble record IDs for the tasks, or None on failure. | |
""" | |
logger.info(f"Starting save_tasks for {len(key_results_with_ids)} key results.") | |
if not key_results_with_ids: | |
logger.info("No key results provided to save_tasks.") | |
return [] | |
try: | |
task_payloads = [] | |
for key_result_data, parent_key_result_id in key_results_with_ids: | |
for task in key_result_data.get("tasks", []): | |
priority = task.get("priority") | |
effort = task.get("effort") | |
timeline = task.get("timeline") | |
task_payloads.append({ | |
"key_result": parent_key_result_id, | |
"description": task.get("task_description"), | |
"deliverable": task.get("objective_deliverable"), | |
"category": task.get("task_category"), | |
# FIX: Convert Enum to its value before sending. | |
"priority": priority.value if hasattr(priority, 'value') else priority, | |
"priority_justification": task.get("priority_justification"), | |
"effort": effort.value if hasattr(effort, 'value') else effort, | |
"timeline": timeline.value if hasattr(timeline, 'value') else timeline, | |
"responsible_party": task.get("responsible_party"), | |
"success_criteria_metrics": task.get("success_criteria_metrics"), | |
"dependencies": task.get("dependencies_prerequisites"), | |
"why": task.get("why_proposed"), | |
}) | |
if not task_payloads: | |
logger.info("No tasks to save.") | |
return [] | |
logger.info(f"Attempting to save {task_payloads} tasks for org_urn: {org_urn}") | |
response_data = bulk_upload_to_bubble(task_payloads, BUBBLE_TASKS_TABLE_NAME) | |
# Validate response and extract IDs. | |
if not response_data or not isinstance(response_data, list): | |
logger.error(f"Failed to save tasks. API response was not a list: {response_data}") | |
return None | |
try: | |
extracted_ids = [item['id'] for item in response_data] | |
except (TypeError, KeyError): | |
logger.error(f"Failed to parse IDs from task API response: {response_data}", exc_info=True) | |
return None | |
if len(extracted_ids) != len(task_payloads): | |
logger.error(f"Failed to save all tasks for org_urn: {org_urn}. " | |
f"Expected {len(task_payloads)} IDs, but got {len(extracted_ids)} from response: {response_data}") | |
return None | |
logger.info(f"Successfully saved {len(extracted_ids)} tasks.") | |
return extracted_ids | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred in save_tasks for org_urn {org_urn}: {e}") | |
return None | |
# --- Orchestrator Function --- | |
def save_actionable_okrs(org_urn: str, actionable_okrs: Dict[str, Any], report_id: str): | |
""" | |
Orchestrates the sequential saving of objectives, key results, and tasks. | |
""" | |
logger.info(f"--- Starting OKR save process for org_urn: {org_urn}, report_id: {report_id} ---") | |
try: | |
objectives_data = actionable_okrs.get("okrs", []) | |
# Defensive check: If data is a string, try to parse it as JSON. | |
if isinstance(objectives_data, str): | |
logger.warning("The 'okrs' data is a string. Attempting to parse as JSON.") | |
try: | |
objectives_data = json.loads(objectives_data) | |
logger.info("Successfully parsed 'okrs' data from JSON string.") | |
except json.JSONDecodeError: | |
logger.error("Failed to parse 'okrs' data. The string is not valid JSON.", exc_info=True) | |
return # Abort if data is malformed | |
if not objectives_data: | |
logger.warning(f"No OKRs found in the input for org_urn: {org_urn}. Aborting save process.") | |
return | |
# Step 1: Save the top-level objectives | |
objective_ids = save_objectives(org_urn, report_id, objectives_data) | |
if objective_ids is None: | |
logger.error("OKR save process aborted due to failure in saving objectives.") | |
return | |
# Combine the original objective data with their new IDs for the next step | |
objectives_with_ids = list(zip(objectives_data, objective_ids)) | |
# Step 2: Save the key results, linking them to the objectives | |
key_results_with_ids = save_key_results(org_urn, objectives_with_ids) | |
if key_results_with_ids is None: | |
logger.error("OKR save process aborted due to failure in saving key results.") | |
return | |
# Step 3: Save the tasks, linking them to the key results | |
task_ids = save_tasks(org_urn, key_results_with_ids) | |
if task_ids is None: | |
logger.error("Task saving failed, but objectives and key results were saved.") | |
# For now, we just log the error and complete. | |
return | |
logger.info(f"--- OKR save process completed successfully for org_urn: {org_urn} ---") | |
except Exception as e: | |
logger.exception(f"An unhandled exception occurred during the save_actionable_okrs orchestration for org_urn {org_urn}: {e}") | |
def fetch_and_reconstruct_data_from_bubble(report_df: pd.DataFrame) -> Optional[Dict[str, Any]]: | |
""" | |
Fetches the latest report, OKRs, Key Results, and Tasks from Bubble for a given organization | |
and reconstructs them into the nested structure expected by the application. | |
Args: | |
org_urn: The URN of the organization. | |
Returns: | |
A dictionary containing the reconstructed data ('report_str', 'actionable_okrs', etc.) | |
or None if the report is not found or an error occurs. | |
""" | |
# logger.info(f"Starting data fetch and reconstruction for org_urn: {org_urn}") | |
# try: | |
# # 1. Fetch the latest report for the organization | |
# # We add a sort field to get the most recent one. | |
# report_df, error = fetch_linkedin_posts_data_from_bubble( | |
# data_type=BUBBLE_REPORT_TABLE_NAME, | |
# org_urn=org_urn, | |
# constraint_key="organization_urn" | |
# ) | |
# if error or report_df is None or report_df.empty: | |
# logger.error(f"Could not fetch latest report for org_urn {org_urn}. Error: {error}") | |
# return None | |
logger.info(f"Starting data fetch and reconstruction") | |
try: | |
# Get the most recent report (assuming the first one is the latest) | |
latest_report = report_df.iloc[0] | |
report_id = latest_report.get('_id') | |
if not report_id: | |
logger.error("Fetched report is missing a Bubble '_id'.") | |
return None | |
logger.info(f"Fetched latest report with ID: {report_id}") | |
# 2. Fetch all related OKRs using the report_id | |
okrs_df, error = fetch_linkedin_posts_data_from_bubble( | |
data_type=BUBBLE_OKR_TABLE_NAME, | |
constraint_value=str(report_id), | |
constraint_key='report', | |
constraint_type = 'equals' | |
) | |
if error: | |
logger.error(f"Error fetching OKRs for report_id {report_id}: {error}") | |
okrs_df = pd.DataFrame() | |
logger.info(f" okr_df {okrs_df}") | |
# 3. Fetch all related Key Results using the OKR IDs | |
okr_ids = okrs_df['_id'].tolist() if not okrs_df.empty else [] | |
logger.info(f" retrieved {len(okr_ids)} okr ID: {okr_ids}") | |
krs_df = pd.DataFrame() | |
if okr_ids: | |
krs_df, error = fetch_linkedin_posts_data_from_bubble( | |
data_type=BUBBLE_KEY_RESULTS_TABLE_NAME, | |
constraint_value=okr_ids, | |
constraint_key='okr', | |
constraint_type='in' | |
) | |
if error: | |
logger.error(f"Error fetching Key Results for OKR IDs {okr_ids}: {error}") | |
krs_df = pd.DataFrame() | |
# 4. Fetch all related Tasks using the Key Result IDs | |
kr_ids = krs_df['_id'].tolist() if not krs_df.empty else [] | |
tasks_df = pd.DataFrame() | |
if kr_ids: | |
tasks_df, error = fetch_linkedin_posts_data_from_bubble( | |
data_type=BUBBLE_TASKS_TABLE_NAME, | |
constraint_value=kr_ids, | |
constraint_key='key_result', | |
constraint_type='in' | |
) | |
if error: | |
logger.error(f"Error fetching Tasks for KR IDs {kr_ids}: {error}") | |
tasks_df = pd.DataFrame() | |
# 5. Reconstruct the nested 'actionable_okrs' dictionary | |
tasks_by_kr_id = tasks_df.groupby('key_result').apply(lambda x: x.to_dict('records')).to_dict() | |
krs_by_okr_id = krs_df.groupby('okr').apply(lambda x: x.to_dict('records')).to_dict() | |
reconstructed_okrs = [] | |
for okr_data in okrs_df.to_dict('records'): | |
okr_id = okr_data['_id'] | |
key_results_list = krs_by_okr_id.get(okr_id, []) | |
for kr_data in key_results_list: | |
kr_id = kr_data['_id'] | |
# Attach tasks to each key result | |
kr_data['tasks'] = tasks_by_kr_id.get(kr_id, []) | |
# Attach key results to the objective | |
okr_data['key_results'] = key_results_list | |
reconstructed_okrs.append(okr_data) | |
actionable_okrs = {"okrs": reconstructed_okrs} | |
return { | |
"report_str": latest_report.get("report_text", "Nessun report trovato."), | |
"quarter": latest_report.get("quarter"), | |
"year": latest_report.get("year"), | |
"actionable_okrs": actionable_okrs, | |
"report_id": report_id | |
} | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred during data reconstruction for org_urn {org_urn}: {e}") | |
return None |