LinkedinMonitor / analytics_plot_generator.py
GuglielmoTor's picture
Update analytics_plot_generator.py
bc55376 verified
raw
history blame
54.2 kB
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import ast # For safely evaluating string representations of lists
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
    """Creates a placeholder Matplotlib plot indicating no data or an error."""
    try:
        fig, ax = plt.subplots(figsize=(8, 4))
        ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True)
        ax.axis('off')
        fig.tight_layout() # MODIFIED
        # Add spacing for consistency, though it might be less critical for placeholders
        fig.subplots_adjust(top=0.90)
        return fig
    except Exception as e:
        logging.error(f"Error creating placeholder plot: {e}")
        # Fallback placeholder if the above fails
        fig_err, ax_err = plt.subplots()
        ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center')
        ax_err.axis('off')
        fig_err.tight_layout() # MODIFIED
        fig_err.subplots_adjust(top=0.90)
        return fig_err
    # No plt.close(fig) here as Gradio handles the figure object.
def generate_posts_activity_plot(df, date_column='published_at'):
    """Generates a plot for posts activity over time."""
    logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Posts activity: DataFrame is empty.")
        return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
    fig = None # Initialize fig to None
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
        posts_over_time = df_copy.set_index(date_column).resample('D').size()
        if posts_over_time.empty:
            logging.info("Posts activity: No posts after resampling by day.")
            return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
        fig, ax = plt.subplots(figsize=(10, 5))
        posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-')
        # ax.set_title('Posts Activity Over Time', y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        logging.info("Successfully generated posts activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
        if fig: plt.close(fig) # Close if fig was created before error
        return create_placeholder_plot(title="Posts Activity Error", message=str(e))
    finally:
        pass
def generate_engagement_type_plot(df, likes_col='likeCount', comments_col='commentCount', shares_col='shareCount'):
    """Generates a bar plot for total engagement types (likes, comments, shares)."""
    logging.info(f"Generating engagement type plot. Input df rows: {len(df) if df is not None else 'None'}")
    required_cols = [likes_col, comments_col, shares_col]
    if df is None or df.empty:
        logging.warning("Engagement type: DataFrame is empty.")
        return create_placeholder_plot(title="Post Engagement Types", message="No data available for the selected period.")
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        msg = f"Engagement type: Columns missing: {missing_cols}. Available: {df.columns.tolist()}"
        logging.warning(msg)
        return create_placeholder_plot(title="Post Engagement Types", message=msg)
    fig = None
    try:
        df_copy = df.copy()
        for col in required_cols:
            df_copy[col] = pd.to_numeric(df_copy[col], errors='coerce').fillna(0)
        total_likes = df_copy[likes_col].sum()
        total_comments = df_copy[comments_col].sum()
        total_shares = df_copy[shares_col].sum()
        if total_likes == 0 and total_comments == 0 and total_shares == 0:
            logging.info("Engagement type: All engagement counts are zero.")
            return create_placeholder_plot(title="Post Engagement Types", message="No engagement data (likes, comments, shares) in the selected period.")
        engagement_data = {
            'Likes': total_likes,
            'Comments': total_comments,
            'Shares': total_shares
        }
        fig, ax = plt.subplots(figsize=(8, 5))
        bars = ax.bar(engagement_data.keys(), engagement_data.values(), color=['skyblue', 'lightgreen', 'salmon'])
        # ax.set_title('Total Post Engagement Types', y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Engagement Type')
        ax.set_ylabel('Total Count')
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        for bar in bars:
            yval = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2.0, yval + (0.01 * max(engagement_data.values(), default=10)), str(int(yval)), ha='center', va='bottom')
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.1) # Adjusted spacing
        logging.info("Successfully generated engagement type plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating engagement type plot: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title="Engagement Type Error", message=str(e))
    finally:
        pass
def generate_mentions_activity_plot(df, date_column='date'):
    """Generates a plot for mentions activity over time."""
    logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning(f"Mentions activity: DataFrame is empty.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
    if date_column not in df.columns:
        logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
        return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
    fig = None
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
        mentions_over_time = df_copy.set_index(date_column).resample('D').size()
        if mentions_over_time.empty:
            logging.info("Mentions activity: No mentions after resampling by day.")
            return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
        fig, ax = plt.subplots(figsize=(10, 5))
        mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple')
        # ax.set_title('Mentions Activity Over Time', y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Number of Mentions')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        logging.info("Successfully generated mentions activity plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
    finally:
        pass
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
    """Generates a pie chart for mention sentiment distribution."""
    logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        logging.warning("Mention sentiment: DataFrame is empty.")
        return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
    if sentiment_column not in df.columns:
        msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
        logging.warning(msg)
        return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
    fig = None
    try:
        df_copy = df.copy()
        sentiment_counts = df_copy[sentiment_column].value_counts()
        if sentiment_counts.empty:
            logging.info("Mention sentiment: No sentiment data after value_counts.")
            return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
        fig, ax = plt.subplots(figsize=(8, 5))
        colors_map = plt.cm.get_cmap('Pastel1', len(sentiment_counts))
        pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
        ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
        # ax.set_title('Mention Sentiment Distribution', y=1.03) # Matplotlib title REMOVED
        ax.axis('equal')
        fig.tight_layout()
        fig.subplots_adjust(top=0.92) # Adjusted spacing
        logging.info("Successfully generated mention sentiment plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
    finally:
        pass
# --- Updated Follower Plot Functions ---
def generate_followers_count_over_time_plot(df, date_info_column='category_name',
                                            organic_count_col='follower_count_organic',
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type',
                                            type_value='follower_gains_monthly'):
    title = f"Followers Count Over Time ({type_value})" # This is for logging/placeholder, not displayed title
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")
    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')
        if df_filtered.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers')
        ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Follower Count')
        ax.legend()
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_followers_growth_rate_plot(df, date_info_column='category_name',
                                        organic_count_col='follower_count_organic',
                                        paid_count_col='follower_count_paid',
                                        type_filter_column='follower_count_type',
                                        type_value='follower_gains_monthly'):
    title = f"Follower Growth Rate ({type_value})" # This is for logging/placeholder, not displayed title
    logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No follower data available.")
    required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
        if df_filtered.empty:
            return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
        df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
        df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
        if df_filtered.empty or len(df_filtered) < 2:
            return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
        df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
        df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
        df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
        fig, ax = plt.subplots(figsize=(10, 5))
        plotted_organic = False
        if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate')
            plotted_organic = True
        plotted_paid = False
        if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
            ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate')
            plotted_paid = True
        if not plotted_organic and not plotted_paid:
            return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Growth Rate (%)')
        ax.yaxis.set_major_formatter(mticker.PercentFormatter())
        ax.legend()
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_followers_by_demographics_plot(df, category_col='category_name',
                                            organic_count_col='follower_count_organic',
                                            paid_count_col='follower_count_paid',
                                            type_filter_column='follower_count_type',
                                            type_value=None, plot_title="Followers by Demographics"): # plot_title is for logging/placeholder
    logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=plot_title, message="No follower data available.")
    required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    if type_value is None:
        return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")
    fig = None
    try:
        df_copy = df.copy()
        df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
        if df_filtered.empty:
            return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")
        df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
        df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
        demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
        demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
        demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])
        if demographics_data.empty:
            return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")
        top_n = 10
        plot_title_updated = plot_title # Use original plot_title for placeholder if needed
        if len(demographics_data) > top_n:
            demographics_data = demographics_data.head(top_n)
            # plot_title_updated = f"{plot_title} (Top {top_n})" # No longer setting internal title
        fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
        bar_width = 0.35
        index = np.arange(len(demographics_data.index))
        bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color='skyblue')
        bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color='lightcoral')
        # ax.set_title(plot_title_updated, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel(category_col.replace('_', ' ').title())
        ax.set_ylabel('Number of Followers')
        ax.set_xticks(index)
        ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
        ax.legend()
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        for bar_group in [bars1, bars2]:
            for bar_item in bar_group:
                yval = bar_item.get_height()
                if yval > 0:
                    ax.text(bar_item.get_x() + bar_item.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]),
                            str(int(yval)), ha='center', va='bottom', fontsize=8)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.20) # Increased bottom margin for rotated labels, top for Gradio label
        return fig
    except Exception as e:
        logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
    finally:
        pass
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
    title = "Engagement Rate Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for engagement rate.")
    required_cols = [date_column, engagement_rate_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")
        engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
        engagement_over_time = engagement_over_time.dropna()
        if engagement_over_time.empty:
            return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Engagement Rate')
        max_rate_val = engagement_over_time.max() if not engagement_over_time.empty else 0
        formatter_xmax = 1.0 if 0 <= max_rate_val <= 1.5 else 100.0
        if max_rate_val > 1.5 and formatter_xmax == 1.0:
             formatter_xmax = 100.0
        elif max_rate_val > 100 and formatter_xmax == 1.0:
             formatter_xmax = max_rate_val
        ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'):
    title = "Reach Over Time (Clicks)" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for reach.")
    required_cols = [date_column, reach_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")
        reach_over_time = df_copy.resample('D')[reach_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Clicks')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
    title = "Impressions Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for impressions.")
    required_cols = [date_column, impressions_col]
    missing_cols = [col for col in required_cols if col not in df.columns]
    if missing_cols:
        return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")
        impressions_over_time = df_copy.resample('D')[impressions_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Impressions')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
    title = "Reactions (Likes) Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for likes.")
    required_cols = [date_column, likes_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")
        data_over_time = df_copy.resample('D')[likes_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Likes')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
    title = "Clicks Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Clicks Col: '{clicks_col}'. DF rows: {len(df) if df is not None else 'None'}")
    # This function essentially calls generate_reach_over_time_plot with specific params
    # The fig.tight_layout() and fig.subplots_adjust will be handled within that function.
    return generate_reach_over_time_plot(df, date_column, clicks_col)
def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
    title = "Shares Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for shares.")
    required_cols = [date_column, shares_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")
        data_over_time = df_copy.resample('D')[shares_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Shares')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
    title = "Comments Over Time" # For logging/placeholder
    logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No post data for comments.")
    required_cols = [date_column, comments_col]
    if any(col not in df.columns for col in required_cols):
        return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid data after cleaning.")
        data_over_time = df_copy.resample('D')[comments_col].sum()
        fig, ax = plt.subplots(figsize=(10, 5))
        ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date')
        ax.set_ylabel('Total Comments')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
    title = "Breakdown of Comments by Sentiment" # For logging/placeholder
    logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data for comment sentiment.")
    if sentiment_column not in df.columns:
        if 'sentiment' in df.columns and sentiment_column != 'sentiment':
            logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
            sentiment_column = 'sentiment'
        else:
            return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' (and fallback 'sentiment') not found. Available: {df.columns.tolist()}")
    if df[sentiment_column].isnull().all():
        return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")
    fig = None
    try:
        df_copy = df.copy()
        df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
        sentiment_counts = df_copy[sentiment_column].value_counts().dropna()
        if sentiment_counts.empty or sentiment_counts.sum() == 0:
            return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")
        fig, ax = plt.subplots(figsize=(8, 5))
        colors_map = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
        pie_colors = [colors_map(i) for i in range(len(sentiment_counts))]
        ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90, colors=pie_colors)
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.axis('equal')
        fig.tight_layout()
        fig.subplots_adjust(top=0.92) # Adjusted spacing
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
    title = f"Post Frequency Over Time ({resample_period})" # For logging/placeholder
    logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if date_column not in df.columns:
        return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")
    fig = None
    try:
        df_copy = df.copy()
        if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
            df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
        df_copy = df_copy.dropna(subset=[date_column])
        if df_copy.empty:
            return create_placeholder_plot(title=title, message="No valid date entries found.")
        post_frequency = df_copy.set_index(date_column).resample(resample_period).size()
        if post_frequency.empty:
            return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")
        fig, ax = plt.subplots(figsize=(10, 5))
        post_frequency.plot(kind='bar' if resample_period in ['M', 'W'] else 'line', ax=ax, marker='o' if resample_period=='D' else None)
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
        ax.set_ylabel('Number of Posts')
        ax.grid(True, linestyle='--', alpha=0.7)
        plt.xticks(rotation=45)
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def generate_content_format_breakdown_plot(df, format_col='media_type'):
    title = "Breakdown of Content by Format" # For logging/placeholder
    logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if format_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        format_counts = df_copy[format_col].value_counts().dropna()
        if format_counts.empty:
            return create_placeholder_plot(title=title, message="No content format data available.")
        fig, ax = plt.subplots(figsize=(8, 6))
        format_counts.plot(kind='bar', ax=ax, color='skyblue')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Media Type')
        ax.set_ylabel('Number of Posts')
        ax.grid(axis='y', linestyle='--', alpha=0.7)
        plt.xticks(rotation=45, ha="right")
        for i, v in enumerate(format_counts):
            ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom')
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, bottom=0.15) # Adjusted spacing
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
def _parse_eb_label(label_data):
    if isinstance(label_data, list):
        return label_data
    if isinstance(label_data, str):
        try:
            parsed = ast.literal_eval(label_data)
            if isinstance(parsed, list):
                return parsed
            return [str(parsed)]
        except (ValueError, SyntaxError):
            return [label_data] if label_data.strip() else []
    if pd.isna(label_data):
        return []
    return []
def generate_content_topic_breakdown_plot(df, topics_col='eb_labels', top_n=15):
    title = f"Breakdown of Content by Topics (Top {top_n})" # For logging/placeholder
    logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")
    if df is None or df.empty:
        return create_placeholder_plot(title=title, message="No data available.")
    if topics_col not in df.columns:
        return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")
    fig = None
    try:
        df_copy = df.copy()
        parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
        exploded_labels = parsed_labels.explode().dropna()
        if exploded_labels.empty:
            return create_placeholder_plot(title=title, message="No topic data found after processing labels.")
        topic_counts = exploded_labels.value_counts()
        if topic_counts.empty:
            return create_placeholder_plot(title=title, message="No topics to display after counting.")
        top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)
        fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
        top_topics.plot(kind='barh', ax=ax, color='mediumseagreen')
        # ax.set_title(title, y=1.03) # Matplotlib title REMOVED
        ax.set_xlabel('Number of Posts')
        ax.set_ylabel('Topic')
        for i, (topic, count) in enumerate(top_topics.items()):
            ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center')
        fig.tight_layout()
        fig.subplots_adjust(top=0.92, left=0.25) # Adjusted spacing, added left margin for long labels
        logging.info(f"Successfully generated {title} plot.")
        return fig
    except Exception as e:
        logging.error(f"Error generating {title}: {e}", exc_info=True)
        if fig: plt.close(fig)
        return create_placeholder_plot(title=f"{title} Error", message=str(e))
    finally:
        pass
if __name__ == '__main__':
    # Create dummy data for testing
    posts_data = {
        'id': [f'post{i}' for i in range(1, 8)],
        'published_at': pd.to_datetime(['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-03', '2023-01-03', '2023-01-04']),
        'likeCount': [10, 5, 12, 8, 15, 3, 20],
        'commentCount': [2, 1, 3, 1, 4, 0, 5],
        'shareCount': [1, 0, 1, 1, 2, 0, 1],
        'clickCount': [20, 15, 30, 22, 40, 10, 50],
        'impressionCount': [200, 150, 300, 220, 400, 100, 500],
        'engagement': [0.05, 0.04, 0.06, 0.055, 0.07, 0.03, 0.08],
        'media_type': ['TEXT', 'IMAGE', 'TEXT', 'VIDEO', 'IMAGE', 'TEXT', 'IMAGE'],
        'eb_labels': [
            "['AI', 'Tech']",
            ['Innovation'],
            'General',
            None,
            ['Tech', 'Future'],
            "['AI', 'Development']",
            ['Tech']
        ],
        'comment_sentiment': ['Positive', 'Neutral', 'Positive', 'Negative', 'Positive', 'Neutral', 'Positive']
    }
    sample_merged_posts_df = pd.DataFrame(posts_data)
    follower_data = {
        'follower_count_type': [
            'follower_gains_monthly', 'follower_gains_monthly', 'follower_gains_monthly',
            'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', 'follower_geo', # Added more for demo
            'follower_function', 'follower_function',
            'follower_industry', 'follower_industry',
            'follower_seniority', 'follower_seniority'
        ],
        'category_name': [
            '2024-01-01', '2024-02-01', '2024-03-01',
            'Italy', 'United Kingdom', 'Spain', 'Germany', 'Switzerland', 'France', 'United States', 'Netherlands', 'Brazil', 'Belgium', # Matching screenshot
            'Engineering', 'Sales',
            'Tech', 'Finance',
            'Senior', 'Junior'
        ],
        'follower_count_organic': [
            100, 110, 125,
            4500, 187, 106, 83, 68, 63, 55, 41, 22, 22, # Matching screenshot values for organic
            400, 200,
            250, 180,
            300, 220
        ],
        'follower_count_paid': [
            20, 30, 25,
            200, 10, 5, 10, 5, 8, 2, 5, 3, 1, # Example paid values
            30, 20,
            45, 35,
            60, 40
        ]
    }
    sample_follower_stats_df = pd.DataFrame(follower_data)
    logging.info("--- Testing Existing Plot Generations ---")
    fig_posts_activity = generate_posts_activity_plot(sample_merged_posts_df.copy())
    if fig_posts_activity: logging.info("Posts activity plot generated.")
    fig_engagement_type = generate_engagement_type_plot(sample_merged_posts_df.copy())
    if fig_engagement_type: logging.info("Engagement type plot generated.")
    mentions_data = {
        'date': pd.to_datetime(['2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03']),
        'sentiment_label': ['Positive', 'Negative', 'Positive', 'Neutral']
    }
    sample_mentions_df = pd.DataFrame(mentions_data)
    fig_mentions_activity = generate_mentions_activity_plot(sample_mentions_df.copy())
    if fig_mentions_activity: logging.info("Mentions activity plot generated.")
    fig_mention_sentiment = generate_mention_sentiment_plot(sample_mentions_df.copy())
    if fig_mention_sentiment: logging.info("Mention sentiment plot generated.")
    fig_followers_count = generate_followers_count_over_time_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
    if fig_followers_count: logging.info("Followers Count Over Time plot generated.")
    fig_followers_rate = generate_followers_growth_rate_plot(sample_follower_stats_df.copy(), type_value='follower_gains_monthly')
    if fig_followers_rate: logging.info("Followers Growth Rate plot generated.")
    fig_geo = generate_followers_by_demographics_plot(sample_follower_stats_df.copy(), type_value='follower_geo', plot_title="Followers by Location")
    if fig_geo: logging.info("Followers by Location plot generated.")
# To display the plot if run locally (optional)
# if fig_geo:
#     plt.show()
    fig_eng_rate = generate_engagement_rate_over_time_plot(sample_merged_posts_df.copy())
    if fig_eng_rate: logging.info("Engagement Rate Over Time plot generated.")
    fig_reach = generate_reach_over_time_plot(sample_merged_posts_df.copy())
    if fig_reach: logging.info("Reach Over Time (Clicks) plot generated.")
    fig_impressions = generate_impressions_over_time_plot(sample_merged_posts_df.copy())
    if fig_impressions: logging.info("Impressions Over Time plot generated.")
    fig_likes_time = generate_likes_over_time_plot(sample_merged_posts_df.copy())
    if fig_likes_time: logging.info("Likes Over Time plot generated.")
    fig_clicks_time = generate_clicks_over_time_plot(sample_merged_posts_df.copy())
    if fig_clicks_time: logging.info("Clicks Over Time plot generated.")
    fig_shares_time = generate_shares_over_time_plot(sample_merged_posts_df.copy())
    if fig_shares_time: logging.info("Shares Over Time plot generated.")
    fig_comments_time = generate_comments_over_time_plot(sample_merged_posts_df.copy())
    if fig_comments_time: logging.info("Comments Over Time plot generated.")
    fig_comments_sentiment = generate_comments_sentiment_breakdown_plot(sample_merged_posts_df.copy(), sentiment_column='comment_sentiment')
    if fig_comments_sentiment: logging.info("Comments Sentiment Breakdown plot generated.")
    logging.info("--- Testing NEW Plot Generations for Content Strategy ---")
    fig_post_freq = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='D')
    if fig_post_freq: logging.info("Post Frequency (Daily) plot generated.")
    fig_post_freq_w = generate_post_frequency_plot(sample_merged_posts_df.copy(), date_column='published_at', resample_period='W')
    if fig_post_freq_w: logging.info("Post Frequency (Weekly) plot generated.")
    fig_content_format = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='media_type')
    if fig_content_format: logging.info("Content Format Breakdown plot generated.")
    fig_content_topics = generate_content_topic_breakdown_plot(sample_merged_posts_df.copy(), topics_col='eb_labels', top_n=5)
    if fig_content_topics: logging.info("Content Topic Breakdown plot generated.")
    logging.info("--- Testing NEW Plot Generations with Edge Cases ---")
    empty_df = pd.DataFrame()
    fig_post_freq_empty = generate_post_frequency_plot(empty_df.copy())
    if fig_post_freq_empty: logging.info("Post Frequency (empty df) placeholder generated.")
    fig_content_format_missing_col = generate_content_format_breakdown_plot(sample_merged_posts_df.copy(), format_col='non_existent_col')
    if fig_content_format_missing_col: logging.info("Content Format (missing col) placeholder generated.")
    fig_content_topics_no_labels = generate_content_topic_breakdown_plot(sample_merged_posts_df[['id', 'published_at']].copy(), topics_col='eb_labels')
    if fig_content_topics_no_labels: logging.info("Content Topic (missing col) placeholder generated.")
    df_no_topics_data = sample_merged_posts_df.copy()
    df_no_topics_data['eb_labels'] = None
    fig_content_topics_all_none = generate_content_topic_breakdown_plot(df_no_topics_data, topics_col='eb_labels')
    if fig_content_topics_all_none: logging.info("Content Topic (all None labels) placeholder generated.")
    logging.info("Test script finished. Review plots if displayed locally or saved.")