LinkedinMonitor / analytics_plot_generator.py
GuglielmoTor's picture
Update analytics_plot_generator.py
37c2a7c verified
raw
history blame
54.2 kB
import pandas as pd
import matplotlib.pyplot as plt
import logging
from io import BytesIO
import base64
import numpy as np
import matplotlib.ticker as mticker
import matplotlib.patches as patches # Added for rounded corners
import ast # For safely evaluating string representations of lists
from analytics_data_processing import (
generate_chatbot_data_summaries,
prepare_filtered_analytics_data
)
# Configure logging for this module
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# Helper function to clean non-printable characters from the entire file content if needed
# For now, I will manually ensure the code below is clean.
# If the error persists, you might need a script to clean the .py file itself.
def _apply_rounded_corners_and_transparent_bg(fig, ax):
"""Helper to apply rounded corners to axes and transparent background."""
fig.patch.set_alpha(0.0) # Make figure background transparent
ax.patch.set_alpha(0.0) # Make default axes background transparent
# Turn off original spines, as we'll draw a new background
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
# Add a new rounded background for the axes
# Using FancyBboxPatch to create a rounded rectangle background for the plot area
# Coordinates are relative to axes (0,0 is bottom-left, 1,1 is top-right)
rounded_rect_bg = patches.FancyBboxPatch(
(0, 0), # (x,y) position of the bounding box
1, # width of the bounding box
1, # height of the bounding box
boxstyle="round,pad=0,rounding_size=0.015", # Style: round, no padding, size of rounding
transform=ax.transAxes, # Coordinates are relative to the axes
facecolor='whitesmoke', # Background color of the rounded area
edgecolor='lightgray', # Border color for the rounded area
linewidth=0.5, # Border line width
zorder=-1 # Put it behind other plot elements like gridlines and data
)
ax.add_patch(rounded_rect_bg)
# Ensure grid is drawn on top of the new background if used
if ax.axison and any(line.get_visible() for line in ax.get_xgridlines() + ax.get_ygridlines()):
ax.grid(True, linestyle='--', alpha=0.6, zorder=0) # Redraw grid with zorder
def create_placeholder_plot(title="No Data or Plot Error", message="Data might be empty or an error occurred."):
"""Creates a placeholder Matplotlib plot indicating no data or an error."""
try:
fig, ax = plt.subplots(figsize=(8, 4))
_apply_rounded_corners_and_transparent_bg(fig, ax) # Apply rounded corners and transparent BG
ax.text(0.5, 0.5, f"{title}\n{message}", ha='center', va='center', fontsize=10, wrap=True, zorder=1)
ax.axis('off') # Turn off axis for placeholder text display
# No tight_layout here as it might interfere with the manual patch for background
fig.subplots_adjust(top=0.90, bottom=0.10, left=0.10, right=0.90) # General padding
return fig
except Exception as e:
logging.error(f"Error creating placeholder plot: {e}")
# Fallback placeholder if the above fails (less styling)
fig_err, ax_err = plt.subplots(figsize=(8,4))
fig_err.patch.set_alpha(0.0)
ax_err.patch.set_alpha(0.0)
ax_err.text(0.5, 0.5, "Fatal: Plot generation error", ha='center', va='center', zorder=1)
ax_err.axis('off')
return fig_err
def generate_posts_activity_plot(df, date_column='published_at'):
"""Generates a plot for posts activity over time."""
logging.info(f"Generating posts activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Posts activity: DataFrame is empty.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Posts activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Posts Activity Over Time", message=f"Date column '{date_column}' not found.")
fig = None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Posts activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No valid date entries found.")
posts_over_time = df_copy.set_index(date_column).resample('D').size()
if posts_over_time.empty:
logging.info("Posts activity: No posts after resampling by day.")
return create_placeholder_plot(title="Posts Activity Over Time", message="No posts in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
posts_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0) # Ensure grid is behind plot line
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5) # Add some padding
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) # Adjusted spacing
logging.info("Successfully generated posts activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating posts activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Posts Activity Error", message=str(e))
def generate_mentions_activity_plot(df, date_column='date'):
"""Generates a plot for mentions activity over time."""
logging.info(f"Generating mentions activity plot. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning(f"Mentions activity: DataFrame is empty.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No data available for the selected period.")
if date_column not in df.columns:
logging.warning(f"Mentions activity: Date column '{date_column}' is missing. Cols: {df.columns.tolist()}.")
return create_placeholder_plot(title="Mentions Activity Over Time", message=f"Date column '{date_column}' not found.")
fig = None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
logging.info("Mentions activity: DataFrame empty after NaNs dropped from date column.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No valid date entries found.")
mentions_over_time = df_copy.set_index(date_column).resample('D').size()
if mentions_over_time.empty:
logging.info("Mentions activity: No mentions after resampling by day.")
return create_placeholder_plot(title="Mentions Activity Over Time", message="No mentions in the selected period.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
mentions_over_time.plot(kind='line', ax=ax, marker='o', linestyle='-', color='purple', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Number of Mentions')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95) # Adjusted spacing
logging.info("Successfully generated mentions activity plot.")
return fig
except Exception as e:
logging.error(f"Error generating mentions activity plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mentions Activity Error", message=str(e))
def generate_mention_sentiment_plot(df, sentiment_column='sentiment_label'):
"""Generates a pie chart for mention sentiment distribution."""
logging.info(f"Generating mention sentiment plot. Sentiment column: '{sentiment_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
logging.warning("Mention sentiment: DataFrame is empty.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No data available for the selected period.")
if sentiment_column not in df.columns:
msg = f"Mention sentiment: Column '{sentiment_column}' is missing. Available: {df.columns.tolist()}"
logging.warning(msg)
return create_placeholder_plot(title="Mention Sentiment Distribution", message=msg)
fig = None
try:
df_copy = df.copy()
sentiment_counts = df_copy[sentiment_column].value_counts()
if sentiment_counts.empty:
logging.info("Mention sentiment: No sentiment data after value_counts.")
return create_placeholder_plot(title="Mention Sentiment Distribution", message="No sentiment data available.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax) # Apply before plotting pie
# Define a list of distinct colors for the pie slices
pie_slice_colors = plt.cm.get_cmap('Pastel2', len(sentiment_counts))
# Removed zorder from ax.pie
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90,
colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
# Set zorder for pie elements if needed, though usually not necessary as they draw on top of the background patch
for wedge in wedges:
wedge.set_zorder(1)
for text_item in texts + autotexts:
text_item.set_zorder(2)
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
# fig.tight_layout(pad=0.5) # tight_layout can sometimes mess with pie charts if labels are long
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95) # Give pie chart space
logging.info("Successfully generated mention sentiment plot.")
return fig
except Exception as e:
logging.error(f"Error generating mention sentiment plot: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title="Mention Sentiment Error", message=str(e))
def generate_followers_count_over_time_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
title = f"Followers Count Over Time ({type_value})"
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
df_filtered = df_filtered.dropna(subset=['datetime_obj', organic_count_col, paid_count_col]).sort_values(by='datetime_obj')
if df_filtered.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning and filtering.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(df_filtered['datetime_obj'], df_filtered[organic_count_col], marker='o', linestyle='-', color='dodgerblue', label='Organic Followers', zorder=1)
ax.plot(df_filtered['datetime_obj'], df_filtered[paid_count_col], marker='x', linestyle='--', color='seagreen', label='Paid Followers', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Follower Count')
legend = ax.legend() # Removed zorder from legend call
if legend: legend.set_zorder(2) # Set zorder on the legend object itself
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_growth_rate_plot(df, date_info_column='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value='follower_gains_monthly'):
title = f"Follower Growth Rate ({type_value})"
logging.info(f"Generating {title}. Date Info: '{date_info_column}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No follower data available.")
required_cols = [date_info_column, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=title, message=f"No data for type '{type_value}'.")
df_filtered['datetime_obj'] = pd.to_datetime(df_filtered[date_info_column], errors='coerce')
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce')
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce')
df_filtered = df_filtered.dropna(subset=['datetime_obj']).sort_values(by='datetime_obj').set_index('datetime_obj')
if df_filtered.empty or len(df_filtered) < 2:
return create_placeholder_plot(title=title, message="Not enough data points to calculate growth rate.")
df_filtered['organic_growth_rate'] = df_filtered[organic_count_col].pct_change() * 100
df_filtered['paid_growth_rate'] = df_filtered[paid_count_col].pct_change() * 100
df_filtered.replace([np.inf, -np.inf], np.nan, inplace=True)
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
plotted_organic = False
if 'organic_growth_rate' in df_filtered.columns and not df_filtered['organic_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['organic_growth_rate'], marker='o', linestyle='-', color='lightcoral', label='Organic Growth Rate', zorder=1)
plotted_organic = True
plotted_paid = False
if 'paid_growth_rate' in df_filtered.columns and not df_filtered['paid_growth_rate'].dropna().empty:
ax.plot(df_filtered.index, df_filtered['paid_growth_rate'], marker='x', linestyle='--', color='mediumpurple', label='Paid Growth Rate', zorder=1)
plotted_paid = True
if not plotted_organic and not plotted_paid:
return create_placeholder_plot(title=title, message="No valid growth rate data to display after calculation.")
ax.set_xlabel('Date')
ax.set_ylabel('Growth Rate (%)')
ax.yaxis.set_major_formatter(mticker.PercentFormatter())
legend = ax.legend() # Removed zorder from legend call
if legend: legend.set_zorder(2) # Set zorder on the legend object itself
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_followers_by_demographics_plot(df, category_col='category_name',
organic_count_col='follower_count_organic',
paid_count_col='follower_count_paid',
type_filter_column='follower_count_type',
type_value=None, plot_title="Followers by Demographics"):
logging.info(f"Generating {plot_title}. Category: '{category_col}', Organic: '{organic_count_col}', Paid: '{paid_count_col}', Type Filter: '{type_filter_column}=={type_value}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=plot_title, message="No follower data available.")
required_cols = [category_col, organic_count_col, paid_count_col, type_filter_column]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=plot_title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
if type_value is None:
return create_placeholder_plot(title=plot_title, message="Demographic type (type_value) not specified.")
fig = None
try:
df_copy = df.copy()
df_filtered = df_copy[df_copy[type_filter_column] == type_value].copy()
if df_filtered.empty:
return create_placeholder_plot(title=plot_title, message=f"No data for demographic type '{type_value}'.")
df_filtered[organic_count_col] = pd.to_numeric(df_filtered[organic_count_col], errors='coerce').fillna(0)
df_filtered[paid_count_col] = pd.to_numeric(df_filtered[paid_count_col], errors='coerce').fillna(0)
demographics_data = df_filtered.groupby(category_col)[[organic_count_col, paid_count_col]].sum()
demographics_data['total_for_sort'] = demographics_data[organic_count_col] + demographics_data[paid_count_col]
demographics_data = demographics_data.sort_values(by='total_for_sort', ascending=False).drop(columns=['total_for_sort'])
if demographics_data.empty:
return create_placeholder_plot(title=plot_title, message="No demographic data to display after filtering and aggregation.")
top_n = 10
if len(demographics_data) > top_n:
demographics_data = demographics_data.head(top_n)
fig, ax = plt.subplots(figsize=(12, 7) if len(demographics_data) > 5 else (10,6) )
_apply_rounded_corners_and_transparent_bg(fig, ax)
bar_width = 0.35
index = np.arange(len(demographics_data.index))
color_organic = plt.cm.get_cmap('tab10')(0)
color_paid = plt.cm.get_cmap('tab10')(1)
bars1 = ax.bar(index - bar_width/2, demographics_data[organic_count_col], bar_width, label='Organic', color=color_organic, zorder=1)
bars2 = ax.bar(index + bar_width/2, demographics_data[paid_count_col], bar_width, label='Paid', color=color_paid, zorder=1)
ax.set_xlabel(category_col.replace('_', ' ').title())
ax.set_ylabel('Number of Followers')
ax.set_xticks(index)
ax.set_xticklabels(demographics_data.index, rotation=45, ha="right")
legend = ax.legend() # Removed zorder from legend call
if legend: legend.set_zorder(2) # Set zorder on the legend object itself
ax.grid(axis='y', linestyle='--', alpha=0.6, zorder=0)
for bar_group in [bars1, bars2]:
for bar_item in bar_group:
yval = bar_item.get_height()
if yval > 0:
ax.text(bar_item.get_x() + bar_item.get_width()/2.0, yval + (0.01 * ax.get_ylim()[1]),
str(int(yval)), ha='center', va='bottom', fontsize=8, zorder=2)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.25, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {plot_title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{plot_title} Error", message=str(e))
def generate_engagement_rate_over_time_plot(df, date_column='published_at', engagement_rate_col='engagement'):
title = "Engagement Rate Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Rate Col: '{engagement_rate_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for engagement rate.")
required_cols = [date_column, engagement_rate_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[engagement_rate_col] = pd.to_numeric(df_copy[engagement_rate_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, engagement_rate_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
engagement_over_time = df_copy.resample('D')[engagement_rate_col].mean()
engagement_over_time = engagement_over_time.dropna()
if engagement_over_time.empty:
return create_placeholder_plot(title=title, message="No engagement rate data to display after resampling.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(engagement_over_time.index, engagement_over_time.values, marker='.', linestyle='-', color='darkorange', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Engagement Rate')
max_rate_val = engagement_over_time.max() if not engagement_over_time.empty else 0
formatter_xmax = 1.0 if 0 <= max_rate_val <= 1.5 else 100.0
if max_rate_val > 1.5 and formatter_xmax == 1.0:
formatter_xmax = 100.0
elif max_rate_val > 100 and formatter_xmax == 1.0:
formatter_xmax = max_rate_val
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=formatter_xmax))
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_reach_over_time_plot(df, date_column='published_at', reach_col='clickCount'):
title = "Reach Over Time (Clicks)"
logging.info(f"Generating {title}. Date: '{date_column}', Reach Col: '{reach_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for reach.")
required_cols = [date_column, reach_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[reach_col] = pd.to_numeric(df_copy[reach_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, reach_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning for reach plot.")
reach_over_time = df_copy.resample('D')[reach_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(reach_over_time.index, reach_over_time.values, marker='.', linestyle='-', color='mediumseagreen', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Total Clicks')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_impressions_over_time_plot(df, date_column='published_at', impressions_col='impressionCount'):
title = "Impressions Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Impressions Col: '{impressions_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for impressions.")
required_cols = [date_column, impressions_col]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return create_placeholder_plot(title=title, message=f"Missing columns: {missing_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[impressions_col] = pd.to_numeric(df_copy[impressions_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, impressions_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning for impressions plot.")
impressions_over_time = df_copy.resample('D')[impressions_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(impressions_over_time.index, impressions_over_time.values, marker='.', linestyle='-', color='slateblue', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Total Impressions')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_likes_over_time_plot(df, date_column='published_at', likes_col='likeCount'):
title = "Reactions (Likes) Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Likes Col: '{likes_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for likes.")
required_cols = [date_column, likes_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[likes_col] = pd.to_numeric(df_copy[likes_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, likes_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[likes_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='crimson', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Total Likes')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_clicks_over_time_plot(df, date_column='published_at', clicks_col='clickCount'):
# This function reuses generate_reach_over_time_plot logic
return generate_reach_over_time_plot(df, date_column, clicks_col)
def generate_shares_over_time_plot(df, date_column='published_at', shares_col='shareCount'):
title = "Shares Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Shares Col: '{shares_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for shares.")
required_cols = [date_column, shares_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[shares_col] = pd.to_numeric(df_copy[shares_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, shares_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[shares_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='teal', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Total Shares')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_comments_over_time_plot(df, date_column='published_at', comments_col='commentCount'):
title = "Comments Over Time"
logging.info(f"Generating {title}. Date: '{date_column}', Comments Col: '{comments_col}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No post data for comments.")
required_cols = [date_column, comments_col]
if any(col not in df.columns for col in required_cols):
return create_placeholder_plot(title=title, message=f"Missing one of required columns: {required_cols}. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy[comments_col] = pd.to_numeric(df_copy[comments_col], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column, comments_col]).set_index(date_column)
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid data after cleaning.")
data_over_time = df_copy.resample('D')[comments_col].sum()
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
ax.plot(data_over_time.index, data_over_time.values, marker='.', linestyle='-', color='gold', zorder=1)
ax.set_xlabel('Date')
ax.set_ylabel('Total Comments')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_comments_sentiment_breakdown_plot(df, sentiment_column='comment_sentiment', date_column=None):
title = "Breakdown of Comments by Sentiment"
logging.info(f"Generating {title}. Sentiment Col: '{sentiment_column}'. DF rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data for comment sentiment.")
if sentiment_column not in df.columns:
if 'sentiment' in df.columns and sentiment_column != 'sentiment': # Check for a common alternative name
logging.warning(f"Sentiment column '{sentiment_column}' not found, attempting to use 'sentiment' column as fallback for comment sentiment plot.")
sentiment_column = 'sentiment'
if sentiment_column not in df.columns: # If fallback also not found
return create_placeholder_plot(title=title, message=f"Fallback sentiment column 'sentiment' also not found. Available: {df.columns.tolist()}")
else: # If original and 'sentiment' fallback are not found
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' not found. Available: {df.columns.tolist()}")
if df[sentiment_column].isnull().all():
return create_placeholder_plot(title=title, message=f"Sentiment column '{sentiment_column}' contains no valid data.")
fig = None
try:
df_copy = df.copy()
df_copy[sentiment_column] = df_copy[sentiment_column].astype(str)
sentiment_counts = df_copy[sentiment_column].value_counts().dropna()
if sentiment_counts.empty or sentiment_counts.sum() == 0:
return create_placeholder_plot(title=title, message="No comment sentiment data to display after processing.")
fig, ax = plt.subplots(figsize=(8, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
pie_slice_colors = plt.cm.get_cmap('coolwarm', len(sentiment_counts))
# Removed zorder from ax.pie
wedges, texts, autotexts = ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90,
colors=[pie_slice_colors(i) for i in range(len(sentiment_counts))])
for wedge in wedges:
wedge.set_zorder(1)
for text_item in texts + autotexts:
text_item.set_zorder(2)
ax.axis('equal')
# fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.95, bottom=0.05, left=0.05, right=0.95)
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_post_frequency_plot(df, date_column='published_at', resample_period='D'):
title = f"Post Frequency Over Time ({resample_period})"
logging.info(f"Generating {title}. Date column: '{date_column}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if date_column not in df.columns:
return create_placeholder_plot(title=title, message=f"Date column '{date_column}' not found.")
fig = None
try:
df_copy = df.copy()
if not pd.api.types.is_datetime64_any_dtype(df_copy[date_column]):
df_copy[date_column] = pd.to_datetime(df_copy[date_column], errors='coerce')
df_copy = df_copy.dropna(subset=[date_column])
if df_copy.empty:
return create_placeholder_plot(title=title, message="No valid date entries found.")
post_frequency = df_copy.set_index(date_column).resample(resample_period).size()
if post_frequency.empty:
return create_placeholder_plot(title=title, message=f"No posts found for the period after resampling by '{resample_period}'.")
fig, ax = plt.subplots(figsize=(10, 5))
_apply_rounded_corners_and_transparent_bg(fig, ax)
if resample_period in ['M', 'W']:
num_bars = len(post_frequency)
bar_colors = plt.cm.get_cmap('viridis', num_bars) # Or 'tab10'
post_frequency.plot(kind='bar', ax=ax, color=[bar_colors(i) for i in range(num_bars)], zorder=1)
for i, v in enumerate(post_frequency):
ax.text(i, v + (0.01 * post_frequency.max()), str(v), ha='center', va='bottom', zorder=2)
else:
post_frequency.plot(kind='line', ax=ax, marker='o', zorder=1)
ax.set_xlabel('Date' if resample_period == 'D' else 'Period')
ax.set_ylabel('Number of Posts')
ax.grid(True, linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.1, right=0.95)
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def generate_content_format_breakdown_plot(df, format_col='media_type'):
title = "Breakdown of Content by Format"
logging.info(f"Generating {title}. Format column: '{format_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if format_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Format column '{format_col}' not found. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
format_counts = df_copy[format_col].value_counts().dropna()
if format_counts.empty:
return create_placeholder_plot(title=title, message="No content format data available.")
fig, ax = plt.subplots(figsize=(8, 6))
_apply_rounded_corners_and_transparent_bg(fig, ax)
num_bars = len(format_counts)
bar_colors = plt.cm.get_cmap('tab10', num_bars) # Using tab10 for distinct colors
format_counts.plot(kind='bar', ax=ax, color=[bar_colors(i) for i in range(num_bars)], zorder=1)
ax.set_xlabel('Media Type')
ax.set_ylabel('Number of Posts')
ax.grid(axis='y', linestyle='--', alpha=0.6, zorder=0)
plt.xticks(rotation=45, ha="right")
for i, v in enumerate(format_counts):
ax.text(i, v + (0.01 * format_counts.max()), str(v), ha='center', va='bottom', zorder=2)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.20, left=0.15, right=0.95)
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
def _parse_eb_label(label_data):
if isinstance(label_data, list):
return label_data
if isinstance(label_data, str):
try:
parsed = ast.literal_eval(label_data)
if isinstance(parsed, list):
return parsed
return [str(parsed)] # Ensure it's a list even if ast.literal_eval returns a single string
except (ValueError, SyntaxError):
# If not a valid list string, treat the whole string as one label if not empty
return [label_data.strip()] if label_data and label_data.strip() else []
if pd.isna(label_data):
return []
return [str(label_data)] # Fallback for other types, ensuring it's a list
def generate_content_topic_breakdown_plot(df, topics_col='li_eb_labels', top_n=15):
title = f"Breakdown of Content by Topics (Top {top_n})"
logging.info(f"Generating {title}. Topics column: '{topics_col}'. Input df rows: {len(df) if df is not None else 'None'}")
if df is None or df.empty:
return create_placeholder_plot(title=title, message="No data available.")
if topics_col not in df.columns:
return create_placeholder_plot(title=title, message=f"Topics column '{topics_col}' not found. Available: {df.columns.tolist()}")
fig = None
try:
df_copy = df.copy()
# Ensure all entries in topics_col are processed by _parse_eb_label
parsed_labels = df_copy[topics_col].apply(_parse_eb_label)
exploded_labels = parsed_labels.explode().dropna() # Explode lists into separate rows
# Filter out any empty strings that might result from parsing
exploded_labels = exploded_labels[exploded_labels != '']
if exploded_labels.empty:
return create_placeholder_plot(title=title, message="No topic data found after processing labels.")
topic_counts = exploded_labels.value_counts()
if topic_counts.empty:
return create_placeholder_plot(title=title, message="No topics to display after counting.")
top_topics = topic_counts.nlargest(top_n).sort_values(ascending=True)
fig, ax = plt.subplots(figsize=(10, 8 if len(top_topics) > 5 else 6))
_apply_rounded_corners_and_transparent_bg(fig, ax)
num_bars = len(top_topics)
bar_colors = plt.cm.get_cmap('YlGnBu', num_bars + 3) # Using a sequential colormap for horizontal bars
top_topics.plot(kind='barh', ax=ax, color=[bar_colors(i+3) for i in range(num_bars)], zorder=1) # +3 to get darker shades
ax.set_xlabel('Number of Posts')
ax.set_ylabel('Topic')
for i, (topic, count) in enumerate(top_topics.items()): # Use .items() for Series
ax.text(count + (0.01 * top_topics.max()), i, str(count), va='center', zorder=2)
fig.tight_layout(pad=0.5)
fig.subplots_adjust(top=0.92, bottom=0.1, left=0.3, right=0.95) # Adjusted left for long topic labels
logging.info(f"Successfully generated {title} plot.")
return fig
except Exception as e:
logging.error(f"Error generating {title}: {e}", exc_info=True)
if fig: plt.close(fig)
return create_placeholder_plot(title=f"{title} Error", message=str(e))
# --- Analytics Tab: Plot Figure Generation Function ---
def update_analytics_plots_figures(token_state_value, date_filter_option, custom_start_date, custom_end_date, current_plot_configs):
logging.info(f"Updating analytics plot figures. Filter: {date_filter_option}, Custom Start: {custom_start_date}, Custom End: {custom_end_date}")
num_expected_plots = 19 # Ensure this matches the number of plots generated
plot_data_summaries_for_chatbot = {} # Initialize dict for chatbot summaries
if not token_state_value or not token_state_value.get("token"):
message = "❌ Accesso negato. Nessun token. Impossibile generare le analisi."
logging.warning(message)
placeholder_figs = [create_placeholder_plot(title="Accesso Negato", message="Nessun token.") for _ in range(num_expected_plots)]
# For each plot_config, add a default "no data" summary
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = "Accesso negato, nessun dato per il chatbot."
return [message] + placeholder_figs + [plot_data_summaries_for_chatbot]
try:
(filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df, # For time-based follower plots
raw_follower_stats_df, # For demographic follower plots
start_dt_for_msg, end_dt_for_msg) = \
prepare_filtered_analytics_data(
token_state_value, date_filter_option, custom_start_date, custom_end_date
)
# Generate data summaries for chatbot AFTER data preparation
plot_data_summaries_for_chatbot = generate_chatbot_data_summaries(
current_plot_configs, # Pass the plot_configs list
filtered_merged_posts_df,
filtered_mentions_df,
date_filtered_follower_stats_df,
raw_follower_stats_df,
token_state_value
)
except Exception as e:
error_msg = f"❌ Errore durante la preparazione dei dati per le analisi: {e}"
logging.error(error_msg, exc_info=True)
placeholder_figs = [create_placeholder_plot(title="Errore Preparazione Dati", message=str(e)) for _ in range(num_expected_plots)]
for p_cfg in current_plot_configs:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore preparazione dati: {e}"
return [error_msg] + placeholder_figs + [plot_data_summaries_for_chatbot]
date_column_posts = token_state_value.get("config_date_col_posts", "published_at")
date_column_mentions = token_state_value.get("config_date_col_mentions", "date")
media_type_col_name = token_state_value.get("config_media_type_col", "media_type")
eb_labels_col_name = token_state_value.get("config_eb_labels_col", "li_eb_label")
plot_figs = [] # Initialize list to hold plot figures
plot_titles_for_errors = [p_cfg["label"] for p_cfg in current_plot_configs]
try:
# Dinamiche dei Follower (2 plots)
plot_figs.append(generate_followers_count_over_time_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly'))
plot_figs.append(generate_followers_growth_rate_plot(date_filtered_follower_stats_df, type_value='follower_gains_monthly')) # Assuming this uses 'follower_gains_monthly' to calculate rate
# Demografia Follower (4 plots)
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_geo', plot_title="Follower per Località"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_function', plot_title="Follower per Ruolo"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_industry', plot_title="Follower per Settore"))
plot_figs.append(generate_followers_by_demographics_plot(raw_follower_stats_df, type_value='follower_seniority', plot_title="Follower per Anzianità"))
# Approfondimenti Performance Post (4 plots)
plot_figs.append(generate_engagement_rate_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_reach_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_impressions_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts)) # Ensure 'impressions_sum' or equivalent is used by this func
plot_figs.append(generate_likes_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
# Engagement Dettagliato Post nel Tempo (4 plots)
plot_figs.append(generate_clicks_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_shares_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_over_time_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_comments_sentiment_breakdown_plot(filtered_merged_posts_df, sentiment_column='comment_sentiment')) # Make sure 'comment_sentiment' exists
# Analisi Strategia Contenuti (3 plots)
plot_figs.append(generate_post_frequency_plot(filtered_merged_posts_df, date_column=date_column_posts))
plot_figs.append(generate_content_format_breakdown_plot(filtered_merged_posts_df, format_col=media_type_col_name))
plot_figs.append(generate_content_topic_breakdown_plot(filtered_merged_posts_df, topics_col=eb_labels_col_name))
# Analisi Menzioni (Dettaglio) (2 plots)
plot_figs.append(generate_mentions_activity_plot(filtered_mentions_df, date_column=date_column_mentions))
plot_figs.append(generate_mention_sentiment_plot(filtered_mentions_df)) # Make sure this function handles empty/malformed df
if len(plot_figs) != num_expected_plots:
logging.warning(f"Mismatch in generated plots. Expected {num_expected_plots}, got {len(plot_figs)}. This will cause UI update issues.")
while len(plot_figs) < num_expected_plots:
plot_figs.append(create_placeholder_plot(title="Grafico Non Generato", message="Logica di generazione incompleta."))
message = f"📊 Analisi aggiornate per il periodo: {date_filter_option}"
if date_filter_option == "Intervallo Personalizzato":
s_display = start_dt_for_msg.strftime('%Y-%m-%d') if start_dt_for_msg else "Qualsiasi"
e_display = end_dt_for_msg.strftime('%Y-%m-%d') if end_dt_for_msg else "Qualsiasi"
message += f" (Da: {s_display} A: {e_display})"
final_plot_figs = []
for i, p_fig_candidate in enumerate(plot_figs):
if p_fig_candidate is not None and not isinstance(p_fig_candidate, str): # Basic check for a plot object
final_plot_figs.append(p_fig_candidate)
else:
err_title = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
logging.warning(f"Plot {err_title} (index {i}) non è una figura valida: {p_fig_candidate}. Uso placeholder.")
final_plot_figs.append(create_placeholder_plot(title=f"Errore: {err_title}", message="Impossibile generare figura."))
return [message] + final_plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except (KeyError, ValueError) as e_plot_data:
logging.error(f"Errore dati durante la generazione di un grafico specifico: {e_plot_data}", exc_info=True)
error_msg_display = f"Errore dati in un grafico: {str(e_plot_data)[:100]}"
num_already_generated = len(plot_figs)
for i in range(num_already_generated, num_expected_plots):
err_title_fill = plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}"
plot_figs.append(create_placeholder_plot(title=f"Errore Dati: {err_title_fill}", message=f"Precedente errore: {str(e_plot_data)[:50]}"))
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore dati grafico: {e_plot_data}"
return [error_msg_display] + plot_figs[:num_expected_plots] + [plot_data_summaries_for_chatbot]
except Exception as e_general:
error_msg = f"❌ Errore generale durante la generazione dei grafici: {e_general}"
logging.error(error_msg, exc_info=True)
placeholder_figs_general = [create_placeholder_plot(title=plot_titles_for_errors[i] if i < len(plot_titles_for_errors) else f"Grafico {i+1}", message=str(e_general)) for i in range(num_expected_plots)]
for p_cfg in current_plot_configs: # Ensure summaries dict is populated on error
if p_cfg["id"] not in plot_data_summaries_for_chatbot:
plot_data_summaries_for_chatbot[p_cfg["id"]] = f"Errore generale grafici: {e_general}"
return [error_msg] + placeholder_figs_general + [plot_data_summaries_for_chatbot]