LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
eea7141 verified
raw
history blame
57.6 kB
# app.py
# (Showing relevant parts that need modification)
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict # To maintain section order
import asyncio # For async operations with the new agent
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---
# --- NEW EMPLOYER BRANDING AGENT MODULE IMPORTS ---
try:
from eb_agent_module import (
EmployerBrandingAgent,
GENERATION_CONFIG_PARAMS as EB_AGENT_GEN_CONFIG, # Rename to avoid conflict
LLM_MODEL_NAME as EB_AGENT_LLM_MODEL, # Rename
GEMINI_EMBEDDING_MODEL_NAME as EB_AGENT_EMBEDDING_MODEL, # Rename
DEFAULT_SAFETY_SETTINGS as EB_AGENT_SAFETY_SETTINGS # Import safety settings
)
EB_AGENT_AVAILABLE = True
logging.info("Successfully imported EmployerBrandingAgent module.")
except ImportError as e:
logging.error(f"Failed to import EmployerBrandingAgent module: {e}", exc_info=True)
EB_AGENT_AVAILABLE = False
# Define dummy classes/variables if import fails, so app can still run
class EmployerBrandingAgent:
def __init__(self, *args, **kwargs): logging.error("EB Agent Dummy Class Initialized")
async def process_query(self, query, **kwargs): return "# Error: Employer Branding Agent module not loaded."
def update_dataframes(self, dfs): pass
def clear_chat_history(self): pass
EB_AGENT_GEN_CONFIG, EB_AGENT_LLM_MODEL, EB_AGENT_EMBEDDING_MODEL, EB_AGENT_SAFETY_SETTINGS = {}, None, None, pd.DataFrame(), {}
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
# --- NEW: States for Employer Branding Agent Tab ---
eb_agent_chat_history_st = gr.State([])
# The agent instance itself will be created on-the-fly or managed if complex state is needed.
# For now, we'll re-initialize it with fresh data in the handler.
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
num_unique_sections = len(unique_ordered_sections)
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
section_titles_map = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
plot_ui_objects, section_titles_map = ui_elements_tuple
if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
for sec_name in unique_ordered_sections:
if sec_name not in section_titles_map:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
else:
logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
for sec_name in unique_ordered_sections:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
formula_close_hint_md = gr.Markdown( # Component for the hint's visibility
"<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
visible=False
)
# --- ASYNC HANDLERS FOR ANALYTICS TAB ---
async def handle_panel_action(
plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
current_chat_histories: dict, current_chat_plot_id: str,
current_plot_data_for_chatbot: dict, current_explored_plot_id: str
):
logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Config not found for plot_id {plot_id_clicked}")
num_plots = len(plot_configs)
error_list_len = 15 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[11] = current_active_action_from_state
error_list[12] = current_chat_plot_id
error_list[13] = current_chat_histories
error_list[14] = current_explored_plot_id
return error_list
clicked_plot_label = clicked_plot_config["label"]
clicked_plot_section = clicked_plot_config["section"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
action_col_visible_update = gr.update(visible=False)
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
formula_close_hint_visible_update = gr.update(visible=False)
chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
generated_panel_vis_updates = []
generated_bomb_btn_updates = []
generated_formula_btn_updates = []
generated_explore_btn_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
for _ in plot_configs:
generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
if current_explored_plot_id:
explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
explored_sec = explored_cfg["section"] if explored_cfg else None
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
for cfg in plot_configs:
is_exp = (cfg["id"] == current_explored_plot_id)
generated_panel_vis_updates.append(gr.update(visible=is_exp))
generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
else:
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=True))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
if action_type == "insights": new_current_chat_plot_id = None
else: # Toggling ON a new action or switching actions
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible_update = gr.update(visible=True)
new_explored_plot_id_to_set = None
logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
for cfg in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked)))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for cfg_btn in plot_configs:
is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
if action_type == "insights":
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
history = current_chat_histories.get(plot_id_clicked, [])
summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
if not history:
prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
llm_hist = [{"role": "user", "content": prompt}]
resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary) # This is your existing LLM call
history = [{"role": "assistant", "content": resp}]
updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
else:
_, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
chatbot_content_update = gr.update(value=history)
s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_close_hint_visible_update = gr.update(visible=True)
f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
if f_key and f_key in PLOT_FORMULAS:
f_data = PLOT_FORMULAS[f_key]
f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
else: f_text += "(No detailed formula information found.)"
formula_content_update = gr.update(value=f_text)
new_current_chat_plot_id = None
final_updates = [
action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update, insights_suggestions_row_visible_update,
s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update,
formula_close_hint_visible_update, # Corrected from formula_close_hint_md
new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories,
new_explored_plot_id_to_set
]
final_updates.extend(generated_panel_vis_updates)
final_updates.extend(generated_bomb_btn_updates)
final_updates.extend(generated_formula_btn_updates)
final_updates.extend(generated_explore_btn_updates)
final_updates.extend(section_title_vis_updates)
logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
return final_updates
async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
if not current_plot_id or not user_message.strip():
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
lbl = cfg["label"] if cfg else "Selected Plot"
summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
hist_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(hist_for_plot, list): hist_for_plot = []
hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
yield hist, gr.update(value=""), chat_histories
resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary) # Existing LLM
hist.append({"role": "assistant", "content": resp})
updated_chat_histories = {**chat_histories, current_plot_id: hist}
yield hist, "", updated_chat_histories
async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
yield update_chunk
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
# This function remains synchronous as per original
logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
num_plots = len(plot_configs)
if not plot_ui_objects:
logging.error("plot_ui_objects not populated for handle_explore_click.")
error_list_len = 4 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[0] = current_explored_plot_id_from_state
error_list[2] = current_active_panel_action_state
return error_list
new_explored_id_to_set = None
is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
action_col_upd = gr.update()
new_active_panel_state_upd = current_active_panel_action_state
formula_hint_upd = gr.update(visible=False)
panel_vis_updates = []
explore_btns_updates = []
bomb_btns_updates = []
formula_btns_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
if is_toggling_off_explore:
new_explored_id_to_set = None
logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
panel_vis_updates.append(gr.update(visible=True))
explore_btns_updates.append(gr.update(value=EXPLORE_ICON))
bomb_btns_updates.append(gr.update())
formula_btns_updates.append(gr.update())
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
for cfg in plot_configs:
is_target = (cfg["id"] == new_explored_id_to_set)
panel_vis_updates.append(gr.update(visible=is_target))
explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
if current_active_panel_action_state:
logging.info("Closing active insight/formula panel due to explore click.")
action_col_upd = gr.update(visible=False)
new_active_panel_state_upd = None
formula_hint_upd = gr.update(visible=False)
for _ in plot_configs:
bomb_btns_updates.append(gr.update(value=BOMB_ICON))
formula_btns_updates.append(gr.update(value=FORMULA_ICON))
else:
for _ in plot_configs:
bomb_btns_updates.append(gr.update())
formula_btns_updates.append(gr.update())
final_explore_updates = [
new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd
]
final_explore_updates.extend(panel_vis_updates)
final_explore_updates.extend(explore_btns_updates)
final_explore_updates.extend(bomb_btns_updates)
final_explore_updates.extend(formula_btns_updates)
final_explore_updates.extend(section_title_vis_updates)
logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
return final_explore_updates
_base_action_panel_ui_outputs = [
global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui,
insights_chat_input_ui, insights_suggestions_row_ui,
insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui,
formula_close_hint_md
]
_action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
_explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
explore_outputs_list = _explore_base_outputs
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id):
return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
if ui_obj.get("bomb_button"):
ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
if ui_obj.get("formula_button"):
ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
if ui_obj.get("explore_button"):
# Original lambda was not async, ensure it matches handle_explore_click signature and type
ui_obj["explore_button"].click(
fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val),
inputs=explore_click_inputs,
outputs=explore_outputs_list,
api_name=f"action_explore_{plot_id}"
) # if handle_explore_click becomes async, this needs 'await' or be wrapped
else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
def refresh_all_analytics_ui_elements(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
# This function remains synchronous as per original
logging.info("Refreshing all analytics UI elements and resetting actions/chat.")
plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
all_updates = [status_msg]
all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
all_updates.extend([
gr.update(visible=False),
gr.update(value=[], visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"),
gr.update(value="Formula details here.", visible=False),
gr.update(visible=False)
])
all_updates.extend([
None,
None,
{},
new_summaries
])
for _ in plot_configs:
all_updates.extend([
gr.update(value=BOMB_ICON),
gr.update(value=FORMULA_ICON),
gr.update(value=EXPLORE_ICON),
gr.update(visible=True)
])
all_updates.append(None)
all_updates.extend([gr.update(visible=True)] * num_unique_sections)
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh. Expected {15 + 5*len(plot_configs) + num_unique_sections}.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
apply_filter_and_sync_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
_ui_resets_for_filter = [
global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_close_hint_md
]
apply_filter_and_sync_outputs_list.extend(_ui_resets_for_filter)
_state_resets_for_filter = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
apply_filter_and_sync_outputs_list.extend(_state_resets_for_filter)
for pc in plot_configs:
pid = pc["id"]
apply_filter_and_sync_outputs_list.extend([
plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()),
plot_ui_objects.get(pid, {}).get("formula_button", gr.update()),
plot_ui_objects.get(pid, {}).get("explore_button", gr.update()),
plot_ui_objects.get(pid, {}).get("panel_component", gr.update())
])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
apply_filter_and_sync_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- NEW: Tab 5 for Employer Branding Agent ---
with gr.TabItem("5️⃣ Agente AI Employer Branding", id="tab_eb_agent"):
gr.Markdown("## 🤖 Interagisci con l'Agente AI per l'Employer Branding")
if not EB_AGENT_AVAILABLE:
gr.Markdown("<p style='color:red;font-weight:bold;'>Attenzione: Il modulo dell'Agente AI per l'Employer Branding non è stato caricato correttamente. Controllare i log e l'installazione della libreria `google-generativeai` e la variabile d'ambiente `GEMINI_API_KEY`.</p>")
elif not os.getenv('GEMINI_API_KEY'):
gr.Markdown("<p style='color:orange;font-weight:bold;'>Attenzione: La variabile d'ambiente `GEMINI_API_KEY` non è impostata. Le funzionalità dell'Agente AI saranno limitate o non funzioneranno.</p>")
gr.Markdown(
"Fai domande sui tuoi dati LinkedIn (statistiche follower, post e menzioni) per ottenere insights e codice Pandas per analizzarli. "
"L'agente utilizza i dati attualmente disponibili nello stato dell'applicazione."
)
with gr.Row():
with gr.Column(scale=2):
eb_agent_chatbot_ui = gr.Chatbot(
label="Chat con Agente AI EB",
value=[[None, "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti ad analizzare i tuoi dati LinkedIn oggi? Chiedimi di generare codice Pandas o di fornire insights."]] if EB_AGENT_AVAILABLE else [[None, "Agente AI non disponibile."]],
bubble_full_width=False,
height=500,
placeholder="L'Agente AI è pronto. Chiedi pure..."
)
eb_agent_chat_input_ui = gr.Textbox(
label="La tua domanda:",
placeholder="Es: 'Mostrami le aziende dei miei follower nel settore tecnologico' o 'Qual è il sentiment medio delle mie menzioni?'",
lines=3,
interactive=EB_AGENT_AVAILABLE # Disable if agent not available
)
with gr.Row():
eb_agent_submit_btn = gr.Button("💬 Invia Messaggio", variant="primary", interactive=EB_AGENT_AVAILABLE)
eb_agent_clear_btn = gr.Button("🗑️ Cancella Chat", variant="stop", interactive=EB_AGENT_AVAILABLE)
with gr.Column(scale=1):
gr.Markdown("#### Schemi Dati Disponibili per l'Agente:")
eb_agent_schema_display_md = gr.Markdown("Gli schemi dei dati (follower, post, menzioni) verranno mostrati qui quando l'agente viene inizializzato con una query.")
eb_agent_status_md = gr.Markdown("Stato Agente: In attesa di input...")
# --- NEW: Handler for Employer Branding Agent Chat ---
eb_agent_instance_dict = {"agent": None} # To store agent instance across calls if needed, or re-init
async def handle_eb_agent_chat(user_message: str, chat_history_list: list, current_token_state: dict):
# Expected outputs: [eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md]
if not EB_AGENT_AVAILABLE or not os.getenv('GEMINI_API_KEY'):
no_key_msg = "L'Agente AI non è disponibile. Assicurati che GEMINI_API_KEY sia configurata."
# Ensure chat_history_list is mutable if it comes from gr.State
current_chat_history = list(chat_history_list) if chat_history_list else []
current_chat_history.append([user_message, no_key_msg])
yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value=no_key_msg), gr.update(value="Nessuno schema disponibile.")
return
current_chat_history = list(chat_history_list) if chat_history_list else []
if not user_message.strip():
yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value="Stato Agente: Per favore, inserisci una domanda."), gr.update() # No change to schema display
return
status_update_msg = "Stato Agente: Elaborazione della tua richiesta..."
# Show user message immediately, update status
# Add user message to current history before yielding
pending_history = current_chat_history + [[user_message, None]]
yield pending_history, pending_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update()
# Prepare DataFrames for the agent
df_follower_stats = current_token_state.get("bubble_follower_stats_df", pd.DataFrame())
df_posts = current_token_state.get("bubble_posts_df", pd.DataFrame())
df_post_stats = current_token_state.get("bubble_post_stats_df", pd.DataFrame())
df_mentions = current_token_state.get("bubble_mentions_df", pd.DataFrame())
dataframes_for_agent = {
"follower_stats": df_follower_stats.copy() if not df_follower_stats.empty else pd.DataFrame(columns=['no_data_follower_stats']),
"posts": df_posts.copy() if not df_posts.empty else pd.DataFrame(columns=['no_data_posts']),
"post_stats": df_post_stats.copy() if not df_post_stats.empty else pd.DataFrame(columns=['no_data_post_stats']),
"mentions": df_mentions.copy() if not df_mentions.empty else pd.DataFrame(columns=['no_data_mentions'])
}
schemas_text_for_display = "Schemi DataFrames inviati all'Agente:\n\n"
from eb_agent_module import get_all_schemas_representation # Assuming this is correctly imported in your main file
schemas_text_for_display += get_all_schemas_representation(dataframes_for_agent) # Using the mock or your actual function
max_schema_display_len = 1500
if len(schemas_text_for_display) > max_schema_display_len:
schemas_text_for_display = schemas_text_for_display[:max_schema_display_len] + "\n...(schemi troncati per la visualizzazione)"
current_agent = EmployerBrandingAgent( # Using the mock or your actual class
llm_model_name=EB_AGENT_LLM_MODEL,
generation_config_dict=EB_AGENT_GEN_CONFIG,
safety_settings_list=EB_AGENT_SAFETY_SETTINGS,
all_dataframes=dataframes_for_agent,
embedding_model_name=EB_AGENT_EMBEDDING_MODEL
)
agent_internal_history = []
for user_q, ai_r_obj in current_chat_history: # Iterate over the current history being built
if user_q: agent_internal_history.append({"role": "user", "content": user_q})
# ai_r_obj could be string, tuple (text, image_url), or None
if ai_r_obj:
if isinstance(ai_r_obj, tuple):
# If it's a (text, image_url) tuple, take the text part for agent's history
# Or combine them if your agent can handle it. For simplicity, just text.
text_for_agent_history = ai_r_obj[0] if ai_r_obj[0] else "Visual media displayed."
agent_internal_history.append({"role": "model", "content": text_for_agent_history})
elif isinstance(ai_r_obj, str):
agent_internal_history.append({"role": "model", "content": ai_r_obj})
# ADD THE CURRENT USER MESSAGE TO THE AGENT'S HISTORY
agent_internal_history.append({"role": "user", "content": user_message})
current_agent.chat_history = agent_internal_history
try:
init_success = await current_agent.initialize()
if not init_success:
error_msg = "Errore: Impossibile inizializzare l'agente AI."
updated_history = current_chat_history + [[user_message, error_msg]]
yield updated_history, updated_history, gr.update(value=""), gr.update(value="Stato Agente: Errore di inizializzazione"), gr.update(value=schemas_text_for_display)
return
logging.info(f"Sending to EB Agent. User: '{user_message}'. DF Keys: {list(dataframes_for_agent.keys())}")
# ai_response_dict is what the agent returns. Based on error, it's {'text': 'blob...'}
ai_response_dict = await current_agent.process_query(user_query=user_message)
bot_message_for_display = "Error: Agent returned an unexpected response." # Default
if isinstance(ai_response_dict, dict):
combined_message_blob = ai_response_dict.get("text")
if isinstance(combined_message_blob, str):
text_part = combined_message_blob
image_data_url = None
# Attempt to parse image data URL from the combined_message_blob
# This assumes the image data URL, if present, is on its own line or at the end.
lines = combined_message_blob.splitlines()
if lines:
possible_image_prefixes = [
"data:image/png;base64,",
"data:image/jpeg;base64,",
"data:image/gif;base64,",
"data:image/webp;base64,"
]
# Check lines from the end, as plot is likely at the end of the message
for i in range(len(lines) - 1, -1, -1):
current_line = lines[i].strip()
for prefix in possible_image_prefixes:
if current_line.startswith(prefix):
# Basic validation: check for typical base64 characters and some length
# This is a heuristic to ensure it's likely a valid base64 data string
if len(current_line) > len(prefix) + 20 and \
all(c in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=" for c in current_line[len(prefix):]):
image_data_url = current_line
# Reconstruct text_part from lines *before* this image line
text_part = "\n".join(lines[:i]).strip()
break # Found image prefix
if image_data_url:
break # Found image line
if image_data_url:
# If text_part became empty after extracting image, use None for text in tuple
bot_message_for_display = (text_part if text_part else None, image_data_url)
else:
# No image found or parsing failed, treat the whole blob as text
bot_message_for_display = combined_message_blob
else:
bot_message_for_display = "Agent returned a dictionary, but the 'text' field was not a string or was missing."
logging.warning(f"AI response dict 'text' field issue. Dict: {ai_response_dict}")
elif isinstance(ai_response_dict, str): # Agent returned a plain string
bot_message_for_display = ai_response_dict
else: # Fallback for other unexpected types
bot_message_for_display = f"Error: Agent returned an unexpected data type: {type(ai_response_dict)}."
logging.error(f"Unexpected AI response type: {type(ai_response_dict)}, content: {ai_response_dict}")
updated_history = current_chat_history + [[user_message, bot_message_for_display]]
status_update_msg = "Stato Agente: Risposta ricevuta."
yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)
except Exception as e:
logging.error(f"Error during EB Agent processing: {e}", exc_info=True)
error_msg_for_chat = f"# Errore dell'Agente AI:\n{type(e).__name__}: {str(e)}"
updated_history = current_chat_history + [[user_message, error_msg_for_chat]]
status_update_msg = f"Stato Agente: Errore - {type(e).__name__}"
yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)
def clear_eb_agent_chat_history():
initial_msg = "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti?" if EB_AGENT_AVAILABLE else "Agente AI non disponibile."
return [[None, initial_msg]], [[None, initial_msg]], "Stato Agente: Chat resettata."
# Connect UI to Handler for EB Agent
eb_agent_submit_btn.click(
fn=handle_eb_agent_chat,
inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
api_name="eb_agent_chat_submit"
)
eb_agent_chat_input_ui.submit(
fn=handle_eb_agent_chat,
inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
api_name="eb_agent_chat_enter"
)
eb_agent_clear_btn.click(
fn=clear_eb_agent_chat_history,
inputs=[],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_status_md],
api_name="eb_agent_clear_chat"
)
# --- Sync Events (at the end of the app's 'with gr.Blocks()' context) ---
sync_event_part1 = sync_data_btn.click(fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full")
sync_event_part2 = sync_event_part1.then(fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False)
sync_event_part3 = sync_event_part2.then(fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # This is synchronous
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
if not EB_AGENT_AVAILABLE:
logging.error("L'Agente AI per l'Employer Branding non è disponibile a causa di errori di importazione.")
elif not os.getenv('GEMINI_API_KEY'):
logging.warning("ATTENZIONE: GEMINI_API_KEY non è impostata. L'Agente AI per l'Employer Branding potrebbe non funzionare.")
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError: logging.warning("Matplotlib non trovato.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)