File size: 57,590 Bytes
6277fe0
abb0fcc
cb60e91
b560569
575b933
b0464a9
87a87e7
791c130
 
266ae82
8673558
63031db
 
a6bc02b
5a483f8
f7fc39b
575b933
266ae82
575b933
 
 
811c2ba
 
575b933
 
 
 
 
266ae82
a6bc02b
46dea86
9d99925
46dea86
6277fe0
2601f1c
5a483f8
abb0fcc
2601f1c
5a483f8
 
 
 
 
 
 
 
eea7141
5a483f8
 
 
 
 
 
 
 
 
 
 
 
 
eea7141
5a483f8
b0464a9
2a3b22e
3b4dccb
2a3b22e
b0464a9
2a3b22e
adb3bbe
6277fe0
67742c4
a342a6b
6a8e128
 
 
 
 
2601f1c
67742c4
6277fe0
5a483f8
6277fe0
 
 
adb3bbe
5a483f8
 
 
 
 
a342a6b
d33040c
 
 
6277fe0
a342a6b
575b933
0612e1d
4ad44b9
266ae82
0612e1d
adb3bbe
791c130
 
d33040c
 
 
 
6277fe0
2a3b22e
4ad44b9
2a3b22e
a342a6b
 
2a3b22e
8673558
d33040c
 
2601f1c
d33040c
6277fe0
8673558
791c130
d33040c
 
791c130
6277fe0
 
 
8673558
d33040c
791c130
 
d33040c
3b902c0
 
791c130
 
 
 
 
6277fe0
266ae82
d33040c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266ae82
d33040c
a6bc02b
 
 
6a8e128
5a483f8
 
6277fe0
a6bc02b
9a76dec
ddd95f0
8673558
 
cb60e91
a6bc02b
9a76dec
a6bc02b
9a76dec
a6bc02b
 
5a483f8
a6bc02b
cb60e91
5a483f8
 
9a76dec
a6bc02b
6277fe0
5a483f8
6277fe0
2601f1c
6277fe0
2601f1c
 
 
 
6277fe0
2601f1c
 
 
 
 
 
6277fe0
2601f1c
 
 
5a483f8
9a76dec
 
 
 
5a483f8
6277fe0
9a76dec
 
 
2601f1c
9a76dec
6277fe0
2601f1c
 
9a76dec
6277fe0
cb60e91
84a0a22
cb60e91
 
 
 
9a76dec
2601f1c
 
a6bc02b
8673558
 
6277fe0
 
a6bc02b
2601f1c
84a0a22
9a76dec
2601f1c
9a76dec
 
2601f1c
cb60e91
 
 
 
9a76dec
ddd95f0
cb60e91
ddd95f0
5a483f8
 
9a76dec
cb60e91
 
 
 
 
84a0a22
9a76dec
 
a6bc02b
9a76dec
 
 
cb60e91
 
84a0a22
9a76dec
6277fe0
cb60e91
5a483f8
cb60e91
5a483f8
6277fe0
cb60e91
8673558
5a483f8
 
cb60e91
6277fe0
84a0a22
9a76dec
84a0a22
cb60e91
5a483f8
cb60e91
84a0a22
9a76dec
 
cb60e91
 
 
ddd95f0
a6bc02b
2601f1c
9a76dec
 
5a483f8
9a76dec
 
5a483f8
 
9a76dec
5a483f8
 
cb60e91
9a76dec
 
cb60e91
ddd95f0
2601f1c
84a0a22
9a76dec
 
 
 
 
 
 
5a483f8
6277fe0
ddd95f0
a6bc02b
 
9a76dec
f1d603c
a6bc02b
 
6277fe0
5a483f8
 
 
 
 
 
cb60e91
5a483f8
998bc4b
ddd95f0
a6bc02b
2601f1c
cb60e91
 
 
 
9a76dec
 
 
cb60e91
 
5a483f8
cb60e91
 
5a483f8
cb60e91
5a483f8
9a76dec
cb60e91
 
 
 
a6bc02b
 
cb60e91
 
 
 
 
 
 
 
2601f1c
a6bc02b
5a483f8
9a76dec
a6bc02b
9a76dec
 
cb60e91
84a0a22
5a483f8
 
84a0a22
 
cb60e91
 
9a76dec
5a483f8
 
 
cb60e91
 
 
 
 
 
9a76dec
 
 
6277fe0
 
5a483f8
cb60e91
 
6277fe0
cb60e91
 
5a483f8
 
 
eb46c40
9a76dec
cb60e91
 
 
a6bc02b
cb60e91
 
 
 
9a76dec
5a483f8
 
 
cb60e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6277fe0
cb60e91
 
 
6277fe0
a6bc02b
5a483f8
a6bc02b
 
5a483f8
 
2601f1c
a6bc02b
 
5a483f8
 
 
 
 
 
 
84a0a22
5a483f8
 
 
 
 
 
a6bc02b
 
 
8673558
dc88746
a6bc02b
 
092a033
998bc4b
ddd95f0
 
eb46c40
ddd95f0
cb60e91
 
 
 
 
5a483f8
 
 
 
 
 
 
a6bc02b
6277fe0
cb60e91
2601f1c
6277fe0
a6bc02b
cb60e91
 
 
 
 
 
8673558
5a483f8
 
a6bc02b
5a483f8
9a76dec
ddd95f0
5a483f8
 
84a0a22
 
5a483f8
 
 
 
 
 
 
cb60e91
84a0a22
cb60e91
5a483f8
 
 
 
cb60e91
 
 
 
 
 
 
5a483f8
cb60e91
2601f1c
5a483f8
 
cb60e91
 
266ae82
 
5a483f8
 
9a76dec
 
 
 
84a0a22
9a76dec
 
84a0a22
 
9a76dec
 
84a0a22
a6bc02b
 
9a76dec
 
 
5a483f8
a6bc02b
84a0a22
 
 
 
6a8e128
791c130
266ae82
2601f1c
a6bc02b
adb3bbe
06d22e5
d33040c
 
 
 
4ad44b9
 
eb46c40
a342a6b
 
575b933
d33040c
 
 
6277fe0
d33040c
a342a6b
d33040c
 
2601f1c
a342a6b
 
266ae82
a342a6b
538b42b
5a483f8
 
 
 
2601f1c
5a483f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cdee8f
5a483f8
f1d603c
6267007
5a483f8
 
6267007
 
 
 
f1d603c
8cdee8f
6267007
 
5a483f8
6267007
f1d603c
8cdee8f
5a483f8
f1d603c
6267007
 
 
8cdee8f
5a483f8
 
6267007
 
5a483f8
f1d603c
5a483f8
f1d603c
5a483f8
 
 
 
 
f1d603c
cf1cd44
6267007
5a483f8
f1d603c
 
5a483f8
6267007
5a483f8
b7b0651
 
5a483f8
22dcfa0
5a483f8
 
 
6267007
5a483f8
6267007
 
 
 
 
 
 
 
 
 
 
8cdee8f
f1d603c
6267007
5a483f8
8cdee8f
 
 
6267007
8cdee8f
 
 
5a483f8
6267007
 
5a483f8
6267007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a483f8
 
8cdee8f
 
5a483f8
 
6267007
 
5a483f8
8cdee8f
5a483f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bc02b
 
 
5a483f8
 
 
 
 
 
266ae82
cb60e91
adb3bbe
a6bc02b
 
 
5a483f8
 
 
 
 
 
a6bc02b
 
5a483f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
# app.py
# (Showing relevant parts that need modification)

import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict # To maintain section order
import asyncio # For async operations with the new agent

# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
    LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
    BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
    PLOT_ID_TO_FORMULA_KEY_MAP)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
    display_main_dashboard,
    run_mentions_tab_display,
    run_follower_stats_tab_display,
    build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
    BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS

# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---

# --- NEW EMPLOYER BRANDING AGENT MODULE IMPORTS ---
try:
    from eb_agent_module import (
        EmployerBrandingAgent, 
        GENERATION_CONFIG_PARAMS as EB_AGENT_GEN_CONFIG, # Rename to avoid conflict
        LLM_MODEL_NAME as EB_AGENT_LLM_MODEL,           # Rename
        GEMINI_EMBEDDING_MODEL_NAME as EB_AGENT_EMBEDDING_MODEL, # Rename        
        DEFAULT_SAFETY_SETTINGS as EB_AGENT_SAFETY_SETTINGS # Import safety settings
    )
    EB_AGENT_AVAILABLE = True
    logging.info("Successfully imported EmployerBrandingAgent module.")
except ImportError as e:
    logging.error(f"Failed to import EmployerBrandingAgent module: {e}", exc_info=True)
    EB_AGENT_AVAILABLE = False
    # Define dummy classes/variables if import fails, so app can still run
    class EmployerBrandingAgent:
        def __init__(self, *args, **kwargs): logging.error("EB Agent Dummy Class Initialized")
        async def process_query(self, query, **kwargs): return "# Error: Employer Branding Agent module not loaded."
        def update_dataframes(self, dfs): pass
        def clear_chat_history(self): pass
    EB_AGENT_GEN_CONFIG, EB_AGENT_LLM_MODEL, EB_AGENT_EMBEDDING_MODEL, EB_AGENT_SAFETY_SETTINGS = {}, None, None, pd.DataFrame(), {}


# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')


# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
               title="LinkedIn Organization Dashboard") as app:
    token_state = gr.State(value={
        "token": None, "client_id": None, "org_urn": None,
        "bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
        "bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
        "fetch_count_for_api": 0, "url_user_token_temp_storage": None,
        "config_date_col_posts": "published_at", "config_date_col_mentions": "date",
        "config_date_col_followers": "date", "config_media_type_col": "media_type",
        "config_eb_labels_col": "li_eb_label"
    })

    # States for existing analytics tab chatbot
    chat_histories_st = gr.State({})
    current_chat_plot_id_st = gr.State(None)
    plot_data_for_chatbot_st = gr.State({})

    # --- NEW: States for Employer Branding Agent Tab ---
    eb_agent_chat_history_st = gr.State([]) 
    # The agent instance itself will be created on-the-fly or managed if complex state is needed.
    # For now, we'll re-initialize it with fresh data in the handler.

    gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
    url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
    status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
    org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)

    app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)

    def initial_load_sequence(url_token, org_urn_val, current_state):
        status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
        dashboard_content = display_main_dashboard(new_state)
        return status_msg, new_state, btn_update, dashboard_content

    with gr.Tabs() as tabs:
        with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
            gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
            sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
            sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
            dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")

            org_urn_display.change(
                fn=initial_load_sequence,
                inputs=[url_user_token_display, org_urn_display, token_state],
                outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
                show_progress="full"
            )

        with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
            gr.Markdown("## 📈 Analisi Performance LinkedIn")
            gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
            analytics_status_md = gr.Markdown("Stato analisi...")

            with gr.Row():
                date_filter_selector = gr.Radio(
                    ["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
                    label="Seleziona Intervallo Date", value="Sempre", scale=3
                )
                with gr.Column(scale=2):
                    custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
                    custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")

            apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")

            def toggle_custom_date_pickers(selection):
                is_custom = selection == "Intervallo Personalizzato"
                return gr.update(visible=is_custom), gr.update(visible=is_custom)

            date_filter_selector.change(
                fn=toggle_custom_date_pickers,
                inputs=[date_filter_selector],
                outputs=[custom_start_date_picker, custom_end_date_picker]
            )

            plot_configs = [
                {"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
                {"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
                {"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
                {"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
                {"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
                {"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
                {"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
                {"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
                {"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
                {"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
                {"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
                {"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
            ]
            assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
            
            unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
            num_unique_sections = len(unique_ordered_sections)

            active_panel_action_state = gr.State(None) 
            explored_plot_id_state = gr.State(None) 

            plot_ui_objects = {} 
            section_titles_map = {} 

            with gr.Row(equal_height=False):
                with gr.Column(scale=8) as plots_area_col:
                    ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
                    if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
                        plot_ui_objects, section_titles_map = ui_elements_tuple
                        if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
                            logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
                            for sec_name in unique_ordered_sections:
                                if sec_name not in section_titles_map:
                                    section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)") 
                    else:
                        logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
                        plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {} 
                        for sec_name in unique_ordered_sections: 
                            section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")


                with gr.Column(scale=4, visible=False) as global_actions_column_ui: 
                    gr.Markdown("### 💡 Azioni Contestuali Grafico")
                    insights_chatbot_ui = gr.Chatbot(
                        label="Chat Insights", type="messages", height=450,
                        bubble_full_width=False, visible=False, show_label=False,
                        placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
                    )
                    insights_chat_input_ui = gr.Textbox(
                        label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
                        lines=2, visible=False, show_label=False
                    )
                    with gr.Row(visible=False) as insights_suggestions_row_ui:
                        insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
                        insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
                        insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)

                    formula_display_markdown_ui = gr.Markdown(
                        "I dettagli sulla formula/metodologia appariranno qui.", visible=False
                    )
                    formula_close_hint_md = gr.Markdown( # Component for the hint's visibility
                        "<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>", 
                        visible=False
                    )

            # --- ASYNC HANDLERS FOR ANALYTICS TAB ---
            async def handle_panel_action(
                plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
                current_chat_histories: dict, current_chat_plot_id: str,
                current_plot_data_for_chatbot: dict, current_explored_plot_id: str 
            ):
                logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")

                clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
                if not clicked_plot_config:
                    logging.error(f"Config not found for plot_id {plot_id_clicked}")
                    num_plots = len(plot_configs)
                    error_list_len = 15 + (4 * num_plots) + num_unique_sections 
                    error_list = [gr.update()] * error_list_len
                    error_list[11] = current_active_action_from_state 
                    error_list[12] = current_chat_plot_id 
                    error_list[13] = current_chat_histories 
                    error_list[14] = current_explored_plot_id 
                    return error_list

                clicked_plot_label = clicked_plot_config["label"]
                clicked_plot_section = clicked_plot_config["section"]
                hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
                is_toggling_off = current_active_action_from_state == hypothetical_new_active_state

                action_col_visible_update = gr.update(visible=False)
                insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
                formula_display_visible_update = gr.update(visible=False)
                formula_close_hint_visible_update = gr.update(visible=False) 
                chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
                
                new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
                updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id

                generated_panel_vis_updates = []
                generated_bomb_btn_updates = []
                generated_formula_btn_updates = []
                generated_explore_btn_updates = []
                section_title_vis_updates = [gr.update()] * num_unique_sections


                if is_toggling_off:
                    new_active_action_state_to_set = None 
                    action_col_visible_update = gr.update(visible=False) 
                    logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")

                    for _ in plot_configs:
                        generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON))
                        generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))

                    if current_explored_plot_id: 
                        explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
                        explored_sec = explored_cfg["section"] if explored_cfg else None
                        for i, sec_name in enumerate(unique_ordered_sections):
                            section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
                        for cfg in plot_configs:
                            is_exp = (cfg["id"] == current_explored_plot_id)
                            generated_panel_vis_updates.append(gr.update(visible=is_exp))
                            generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
                    else: 
                        for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
                        for _ in plot_configs:
                            generated_panel_vis_updates.append(gr.update(visible=True))
                            generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON)) 
                    
                    if action_type == "insights": new_current_chat_plot_id = None

                else: # Toggling ON a new action or switching actions
                    new_active_action_state_to_set = hypothetical_new_active_state
                    action_col_visible_update = gr.update(visible=True) 
                    new_explored_plot_id_to_set = None 
                    logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")

                    for i, sec_name in enumerate(unique_ordered_sections): 
                        section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
                    for cfg in plot_configs: 
                        generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked)))
                        generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON)) 

                    for cfg_btn in plot_configs: 
                        is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
                        is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
                        generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON))
                        generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
                    
                    if action_type == "insights":
                        insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
                        new_current_chat_plot_id = plot_id_clicked
                        history = current_chat_histories.get(plot_id_clicked, [])
                        summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
                        if not history: 
                            prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
                            llm_hist = [{"role": "user", "content": prompt}]
                            resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary) # This is your existing LLM call
                            history = [{"role": "assistant", "content": resp}] 
                            updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
                        else: 
                            _, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary) 
                        
                        chatbot_content_update = gr.update(value=history)
                        s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")

                    elif action_type == "formula":
                        formula_display_visible_update = gr.update(visible=True)
                        formula_close_hint_visible_update = gr.update(visible=True) 
                        f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
                        f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
                        if f_key and f_key in PLOT_FORMULAS:
                            f_data = PLOT_FORMULAS[f_key]
                            f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
                        else: f_text += "(No detailed formula information found.)"
                        formula_content_update = gr.update(value=f_text)
                        new_current_chat_plot_id = None 

                final_updates = [
                    action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update,
                    insights_chat_input_visible_update, insights_suggestions_row_visible_update, 
                    s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update,
                    formula_close_hint_visible_update, # Corrected from formula_close_hint_md
                    new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories,
                    new_explored_plot_id_to_set 
                ]

                final_updates.extend(generated_panel_vis_updates)   
                final_updates.extend(generated_bomb_btn_updates)    
                final_updates.extend(generated_formula_btn_updates) 
                final_updates.extend(generated_explore_btn_updates) 
                final_updates.extend(section_title_vis_updates)     
                
                logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
                return final_updates

            async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
                if not current_plot_id or not user_message.strip():
                    current_history_for_plot = chat_histories.get(current_plot_id, [])
                    if not isinstance(current_history_for_plot, list): current_history_for_plot = []
                    yield current_history_for_plot, gr.update(value=""), chat_histories; return
                
                cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
                lbl = cfg["label"] if cfg else "Selected Plot"
                summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
                
                hist_for_plot = chat_histories.get(current_plot_id, [])
                if not isinstance(hist_for_plot, list): hist_for_plot = [] 

                hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
                yield hist, gr.update(value=""), chat_histories 

                resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary) # Existing LLM
                hist.append({"role": "assistant", "content": resp})
                
                updated_chat_histories = {**chat_histories, current_plot_id: hist}
                yield hist, "", updated_chat_histories


            async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
                if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
                    current_history_for_plot = chat_histories.get(current_plot_id, [])
                    if not isinstance(current_history_for_plot, list): current_history_for_plot = []
                    yield current_history_for_plot, gr.update(value=""), chat_histories; return
                
                async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
                    yield update_chunk


            def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
                # This function remains synchronous as per original
                logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
                num_plots = len(plot_configs)
                if not plot_ui_objects: 
                    logging.error("plot_ui_objects not populated for handle_explore_click.")
                    error_list_len = 4 + (4 * num_plots) + num_unique_sections 
                    error_list = [gr.update()] * error_list_len
                    error_list[0] = current_explored_plot_id_from_state 
                    error_list[2] = current_active_panel_action_state 
                    return error_list

                new_explored_id_to_set = None
                is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)

                action_col_upd = gr.update() 
                new_active_panel_state_upd = current_active_panel_action_state 
                formula_hint_upd = gr.update(visible=False) 

                panel_vis_updates = []
                explore_btns_updates = []
                bomb_btns_updates = []
                formula_btns_updates = []
                section_title_vis_updates = [gr.update()] * num_unique_sections

                clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
                sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None

                if is_toggling_off_explore:
                    new_explored_id_to_set = None 
                    logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
                    for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
                    for _ in plot_configs:
                        panel_vis_updates.append(gr.update(visible=True))
                        explore_btns_updates.append(gr.update(value=EXPLORE_ICON))
                        bomb_btns_updates.append(gr.update()) 
                        formula_btns_updates.append(gr.update()) 
                else: 
                    new_explored_id_to_set = plot_id_clicked
                    logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
                    for i, sec_name in enumerate(unique_ordered_sections): 
                        section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
                    for cfg in plot_configs:
                        is_target = (cfg["id"] == new_explored_id_to_set)
                        panel_vis_updates.append(gr.update(visible=is_target))
                        explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
                    
                    if current_active_panel_action_state:
                        logging.info("Closing active insight/formula panel due to explore click.")
                        action_col_upd = gr.update(visible=False) 
                        new_active_panel_state_upd = None 
                        formula_hint_upd = gr.update(visible=False) 
                        for _ in plot_configs:
                            bomb_btns_updates.append(gr.update(value=BOMB_ICON))
                            formula_btns_updates.append(gr.update(value=FORMULA_ICON))
                    else:
                        for _ in plot_configs:
                            bomb_btns_updates.append(gr.update())
                            formula_btns_updates.append(gr.update())
                
                final_explore_updates = [
                    new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd
                ]
                final_explore_updates.extend(panel_vis_updates)
                final_explore_updates.extend(explore_btns_updates)
                final_explore_updates.extend(bomb_btns_updates)
                final_explore_updates.extend(formula_btns_updates)
                final_explore_updates.extend(section_title_vis_updates)
                
                logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
                return final_explore_updates


            _base_action_panel_ui_outputs = [
                global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui, 
                insights_chat_input_ui, insights_suggestions_row_ui, 
                insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
                formula_display_markdown_ui, formula_display_markdown_ui, 
                formula_close_hint_md 
            ]
            _action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
            
            action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs 
            action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]) 
            action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])   
            action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]) 
            action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]) 
            action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections]) 

            _explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md] 
            explore_outputs_list = _explore_base_outputs 
            explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs]) 
            explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs]) 
            explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])   
            explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs]) 
            explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections]) 

            action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
            explore_click_inputs = [explored_plot_id_state, active_panel_action_state]

            def create_panel_action_handler(p_id, action_type_str):
                async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id):
                    return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
                return _handler

            for config_item in plot_configs:
                plot_id = config_item["id"]
                if plot_id in plot_ui_objects:
                    ui_obj = plot_ui_objects[plot_id]
                    if ui_obj.get("bomb_button"):
                        ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
                    if ui_obj.get("formula_button"):
                        ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
                    if ui_obj.get("explore_button"):
                        # Original lambda was not async, ensure it matches handle_explore_click signature and type
                        ui_obj["explore_button"].click(
                            fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val), 
                            inputs=explore_click_inputs, 
                            outputs=explore_outputs_list, 
                            api_name=f"action_explore_{plot_id}"
                        ) # if handle_explore_click becomes async, this needs 'await' or be wrapped
                else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")


            chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
            chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
            insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
            
            suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
            insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
            insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
            insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")


            def refresh_all_analytics_ui_elements(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
                # This function remains synchronous as per original
                logging.info("Refreshing all analytics UI elements and resetting actions/chat.")
                plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
                status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
                
                all_updates = [status_msg] 
                all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))]) 
                
                all_updates.extend([ 
                    gr.update(visible=False), 
                    gr.update(value=[], visible=False), 
                    gr.update(value="", visible=False), 
                    gr.update(visible=False), 
                    gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"), 
                    gr.update(value="Formula details here.", visible=False), 
                    gr.update(visible=False) 
                ]) 
                
                all_updates.extend([ 
                    None, 
                    None, 
                    {},   
                    new_summaries 
                ]) 
                
                for _ in plot_configs: 
                    all_updates.extend([
                        gr.update(value=BOMB_ICON), 
                        gr.update(value=FORMULA_ICON), 
                        gr.update(value=EXPLORE_ICON), 
                        gr.update(visible=True) 
                    ]) 
                
                all_updates.append(None) 
                all_updates.extend([gr.update(visible=True)] * num_unique_sections) 
                
                logging.info(f"Prepared {len(all_updates)} updates for analytics refresh. Expected {15 + 5*len(plot_configs) + num_unique_sections}.")
                return all_updates

            apply_filter_and_sync_outputs_list = [analytics_status_md] 
            apply_filter_and_sync_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs]) 
            
            _ui_resets_for_filter = [
                global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui,
                insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
                formula_display_markdown_ui, formula_close_hint_md 
            ]
            apply_filter_and_sync_outputs_list.extend(_ui_resets_for_filter)
            
            _state_resets_for_filter = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
            apply_filter_and_sync_outputs_list.extend(_state_resets_for_filter)

            for pc in plot_configs: 
                pid = pc["id"]
                apply_filter_and_sync_outputs_list.extend([
                    plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()),
                    plot_ui_objects.get(pid, {}).get("formula_button", gr.update()),
                    plot_ui_objects.get(pid, {}).get("explore_button", gr.update()),
                    plot_ui_objects.get(pid, {}).get("panel_component", gr.update()) 
                ])
            
            apply_filter_and_sync_outputs_list.append(explored_plot_id_state) 
            
            apply_filter_and_sync_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections]) 
            
            apply_filter_btn.click(
                fn=refresh_all_analytics_ui_elements,
                inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
                outputs=apply_filter_and_sync_outputs_list, show_progress="full"
            )

        with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
            refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
            mentions_html = gr.HTML("Dati menzioni...")
            mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
            refresh_mentions_display_btn.click(
                fn=run_mentions_tab_display, inputs=[token_state],
                outputs=[mentions_html, mentions_sentiment_dist_plot],
                show_progress="full"
            )

        with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
            refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
            follower_stats_html = gr.HTML("Statistiche follower...")
            with gr.Row():
                fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
            with gr.Row():
                fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
                fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
            
            refresh_follower_stats_btn.click(
                fn=run_follower_stats_tab_display, inputs=[token_state],
                outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
                show_progress="full"
            )
        
        # --- NEW: Tab 5 for Employer Branding Agent ---
        with gr.TabItem("5️⃣ Agente AI Employer Branding", id="tab_eb_agent"):
            gr.Markdown("## 🤖 Interagisci con l'Agente AI per l'Employer Branding")
            
            if not EB_AGENT_AVAILABLE:
                gr.Markdown("<p style='color:red;font-weight:bold;'>Attenzione: Il modulo dell'Agente AI per l'Employer Branding non è stato caricato correttamente. Controllare i log e l'installazione della libreria `google-generativeai` e la variabile d'ambiente `GEMINI_API_KEY`.</p>")
            elif not os.getenv('GEMINI_API_KEY'):
                 gr.Markdown("<p style='color:orange;font-weight:bold;'>Attenzione: La variabile d'ambiente `GEMINI_API_KEY` non è impostata. Le funzionalità dell'Agente AI saranno limitate o non funzioneranno.</p>")


            gr.Markdown(
                "Fai domande sui tuoi dati LinkedIn (statistiche follower, post e menzioni) per ottenere insights e codice Pandas per analizzarli. "
                "L'agente utilizza i dati attualmente disponibili nello stato dell'applicazione."
            )
            with gr.Row():
                with gr.Column(scale=2):
                    eb_agent_chatbot_ui = gr.Chatbot(
                        label="Chat con Agente AI EB",
                        value=[[None, "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti ad analizzare i tuoi dati LinkedIn oggi? Chiedimi di generare codice Pandas o di fornire insights."]] if EB_AGENT_AVAILABLE else [[None, "Agente AI non disponibile."]],
                        bubble_full_width=False,
                        height=500,
                        placeholder="L'Agente AI è pronto. Chiedi pure..."
                    )
                    eb_agent_chat_input_ui = gr.Textbox(
                        label="La tua domanda:",
                        placeholder="Es: 'Mostrami le aziende dei miei follower nel settore tecnologico' o 'Qual è il sentiment medio delle mie menzioni?'",
                        lines=3,
                        interactive=EB_AGENT_AVAILABLE # Disable if agent not available
                    )
                    with gr.Row():
                        eb_agent_submit_btn = gr.Button("💬 Invia Messaggio", variant="primary", interactive=EB_AGENT_AVAILABLE)
                        eb_agent_clear_btn = gr.Button("🗑️ Cancella Chat", variant="stop", interactive=EB_AGENT_AVAILABLE)
                with gr.Column(scale=1):
                    gr.Markdown("#### Schemi Dati Disponibili per l'Agente:")
                    eb_agent_schema_display_md = gr.Markdown("Gli schemi dei dati (follower, post, menzioni) verranno mostrati qui quando l'agente viene inizializzato con una query.")
                    eb_agent_status_md = gr.Markdown("Stato Agente: In attesa di input...")
            
            # --- NEW: Handler for Employer Branding Agent Chat ---
            eb_agent_instance_dict = {"agent": None} # To store agent instance across calls if needed, or re-init
            
            async def handle_eb_agent_chat(user_message: str, chat_history_list: list, current_token_state: dict):
                # Expected outputs: [eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md]
                
                if not EB_AGENT_AVAILABLE or not os.getenv('GEMINI_API_KEY'):
                    no_key_msg = "L'Agente AI non è disponibile. Assicurati che GEMINI_API_KEY sia configurata."
                    # Ensure chat_history_list is mutable if it comes from gr.State
                    current_chat_history = list(chat_history_list) if chat_history_list else []
                    current_chat_history.append([user_message, no_key_msg])
                    yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value=no_key_msg), gr.update(value="Nessuno schema disponibile.")
                    return
            
                current_chat_history = list(chat_history_list) if chat_history_list else []
            
                if not user_message.strip():
                    yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value="Stato Agente: Per favore, inserisci una domanda."), gr.update() # No change to schema display
                    return
            
                status_update_msg = "Stato Agente: Elaborazione della tua richiesta..."
                # Show user message immediately, update status
                # Add user message to current history before yielding
                pending_history = current_chat_history + [[user_message, None]]
                yield pending_history, pending_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update()
            
                # Prepare DataFrames for the agent
                df_follower_stats = current_token_state.get("bubble_follower_stats_df", pd.DataFrame())
                df_posts = current_token_state.get("bubble_posts_df", pd.DataFrame())  
                df_post_stats = current_token_state.get("bubble_post_stats_df", pd.DataFrame())  
                df_mentions = current_token_state.get("bubble_mentions_df", pd.DataFrame())
                
                dataframes_for_agent = {
                    "follower_stats": df_follower_stats.copy() if not df_follower_stats.empty else pd.DataFrame(columns=['no_data_follower_stats']),
                    "posts": df_posts.copy() if not df_posts.empty else pd.DataFrame(columns=['no_data_posts']),
                    "post_stats": df_post_stats.copy() if not df_post_stats.empty else pd.DataFrame(columns=['no_data_post_stats']),
                    "mentions": df_mentions.copy() if not df_mentions.empty else pd.DataFrame(columns=['no_data_mentions'])
                }
                
                schemas_text_for_display = "Schemi DataFrames inviati all'Agente:\n\n"
                from eb_agent_module import get_all_schemas_representation # Assuming this is correctly imported in your main file
                schemas_text_for_display += get_all_schemas_representation(dataframes_for_agent) # Using the mock or your actual function
                max_schema_display_len = 1500
                if len(schemas_text_for_display) > max_schema_display_len:
                    schemas_text_for_display = schemas_text_for_display[:max_schema_display_len] + "\n...(schemi troncati per la visualizzazione)"
                
                current_agent = EmployerBrandingAgent( # Using the mock or your actual class
                    llm_model_name=EB_AGENT_LLM_MODEL,
                    generation_config_dict=EB_AGENT_GEN_CONFIG,
                    safety_settings_list=EB_AGENT_SAFETY_SETTINGS,
                    all_dataframes=dataframes_for_agent,
                    embedding_model_name=EB_AGENT_EMBEDDING_MODEL
                )
                
                agent_internal_history = []
                for user_q, ai_r_obj in current_chat_history: # Iterate over the current history being built
                    if user_q: agent_internal_history.append({"role": "user", "content": user_q})
                    # ai_r_obj could be string, tuple (text, image_url), or None
                    if ai_r_obj:
                        if isinstance(ai_r_obj, tuple):
                            # If it's a (text, image_url) tuple, take the text part for agent's history
                            # Or combine them if your agent can handle it. For simplicity, just text.
                            text_for_agent_history = ai_r_obj[0] if ai_r_obj[0] else "Visual media displayed."
                            agent_internal_history.append({"role": "model", "content": text_for_agent_history})
                        elif isinstance(ai_r_obj, str):
                            agent_internal_history.append({"role": "model", "content": ai_r_obj})
            
                # ADD THE CURRENT USER MESSAGE TO THE AGENT'S HISTORY
                agent_internal_history.append({"role": "user", "content": user_message})
                current_agent.chat_history = agent_internal_history
                
                try:
                    init_success = await current_agent.initialize()
                    if not init_success:
                        error_msg = "Errore: Impossibile inizializzare l'agente AI."
                        updated_history = current_chat_history + [[user_message, error_msg]]
                        yield updated_history, updated_history, gr.update(value=""), gr.update(value="Stato Agente: Errore di inizializzazione"), gr.update(value=schemas_text_for_display)
                        return
            
                    logging.info(f"Sending to EB Agent. User: '{user_message}'. DF Keys: {list(dataframes_for_agent.keys())}")
                    # ai_response_dict is what the agent returns. Based on error, it's {'text': 'blob...'}
                    ai_response_dict = await current_agent.process_query(user_query=user_message) 
                    
                    bot_message_for_display = "Error: Agent returned an unexpected response." # Default
            
                    if isinstance(ai_response_dict, dict):
                        combined_message_blob = ai_response_dict.get("text")
            
                        if isinstance(combined_message_blob, str):
                            text_part = combined_message_blob
                            image_data_url = None
                            
                            # Attempt to parse image data URL from the combined_message_blob
                            # This assumes the image data URL, if present, is on its own line or at the end.
                            lines = combined_message_blob.splitlines()
                            if lines:
                                possible_image_prefixes = [
                                    "data:image/png;base64,", 
                                    "data:image/jpeg;base64,", 
                                    "data:image/gif;base64,",
                                    "data:image/webp;base64,"
                                ]
                                # Check lines from the end, as plot is likely at the end of the message
                                for i in range(len(lines) - 1, -1, -1):
                                    current_line = lines[i].strip()
                                    for prefix in possible_image_prefixes:
                                        if current_line.startswith(prefix):
                                            # Basic validation: check for typical base64 characters and some length
                                            # This is a heuristic to ensure it's likely a valid base64 data string
                                            if len(current_line) > len(prefix) + 20 and \
                                               all(c in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=" for c in current_line[len(prefix):]):
                                                image_data_url = current_line
                                                # Reconstruct text_part from lines *before* this image line
                                                text_part = "\n".join(lines[:i]).strip()
                                                break # Found image prefix
                                    if image_data_url:
                                        break # Found image line
            
                            if image_data_url:
                                # If text_part became empty after extracting image, use None for text in tuple
                                bot_message_for_display = (text_part if text_part else None, image_data_url)
                            else:
                                # No image found or parsing failed, treat the whole blob as text
                                bot_message_for_display = combined_message_blob
                        else:
                            bot_message_for_display = "Agent returned a dictionary, but the 'text' field was not a string or was missing."
                            logging.warning(f"AI response dict 'text' field issue. Dict: {ai_response_dict}")
                    
                    elif isinstance(ai_response_dict, str): # Agent returned a plain string
                        bot_message_for_display = ai_response_dict
                    else: # Fallback for other unexpected types
                        bot_message_for_display = f"Error: Agent returned an unexpected data type: {type(ai_response_dict)}."
                        logging.error(f"Unexpected AI response type: {type(ai_response_dict)}, content: {ai_response_dict}")
            
                    updated_history = current_chat_history + [[user_message, bot_message_for_display]]
                    
                    status_update_msg = "Stato Agente: Risposta ricevuta."
                    yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)
            
                except Exception as e:
                    logging.error(f"Error during EB Agent processing: {e}", exc_info=True)
                    error_msg_for_chat = f"# Errore dell'Agente AI:\n{type(e).__name__}: {str(e)}"
                    updated_history = current_chat_history + [[user_message, error_msg_for_chat]]
                    status_update_msg = f"Stato Agente: Errore - {type(e).__name__}"
                    yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)


            def clear_eb_agent_chat_history():
                initial_msg = "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti?" if EB_AGENT_AVAILABLE else "Agente AI non disponibile."
                return [[None, initial_msg]], [[None, initial_msg]], "Stato Agente: Chat resettata."

            # Connect UI to Handler for EB Agent
            eb_agent_submit_btn.click(
                fn=handle_eb_agent_chat,
                inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
                outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
                api_name="eb_agent_chat_submit"
            )
            eb_agent_chat_input_ui.submit(
                fn=handle_eb_agent_chat,
                inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
                outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
                api_name="eb_agent_chat_enter"
            )
            eb_agent_clear_btn.click(
                fn=clear_eb_agent_chat_history,
                inputs=[],
                outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_status_md],
                api_name="eb_agent_clear_chat"
            )


    # --- Sync Events (at the end of the app's 'with gr.Blocks()' context) ---
    sync_event_part1 = sync_data_btn.click(fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full")
    sync_event_part2 = sync_event_part1.then(fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False)
    sync_event_part3 = sync_event_part2.then(fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False)
    sync_event_final = sync_event_part3.then(
        fn=refresh_all_analytics_ui_elements, # This is synchronous
        inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st], 
        outputs=apply_filter_and_sync_outputs_list, 
        show_progress="full"
    )


if __name__ == "__main__":
    if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
    if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
        logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
    
    if not EB_AGENT_AVAILABLE:
        logging.error("L'Agente AI per l'Employer Branding non è disponibile a causa di errori di importazione.")
    elif not os.getenv('GEMINI_API_KEY'):
        logging.warning("ATTENZIONE: GEMINI_API_KEY non è impostata. L'Agente AI per l'Employer Branding potrebbe non funzionare.")

    try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
    except ImportError: logging.warning("Matplotlib non trovato.")
    
    app.launch(server_name="0.0.0.0", server_port=7860, debug=True)