Spaces:
Running
Running
File size: 57,590 Bytes
6277fe0 abb0fcc cb60e91 b560569 575b933 b0464a9 87a87e7 791c130 266ae82 8673558 63031db a6bc02b 5a483f8 f7fc39b 575b933 266ae82 575b933 811c2ba 575b933 266ae82 a6bc02b 46dea86 9d99925 46dea86 6277fe0 2601f1c 5a483f8 abb0fcc 2601f1c 5a483f8 eea7141 5a483f8 eea7141 5a483f8 b0464a9 2a3b22e 3b4dccb 2a3b22e b0464a9 2a3b22e adb3bbe 6277fe0 67742c4 a342a6b 6a8e128 2601f1c 67742c4 6277fe0 5a483f8 6277fe0 adb3bbe 5a483f8 a342a6b d33040c 6277fe0 a342a6b 575b933 0612e1d 4ad44b9 266ae82 0612e1d adb3bbe 791c130 d33040c 6277fe0 2a3b22e 4ad44b9 2a3b22e a342a6b 2a3b22e 8673558 d33040c 2601f1c d33040c 6277fe0 8673558 791c130 d33040c 791c130 6277fe0 8673558 d33040c 791c130 d33040c 3b902c0 791c130 6277fe0 266ae82 d33040c 266ae82 d33040c a6bc02b 6a8e128 5a483f8 6277fe0 a6bc02b 9a76dec ddd95f0 8673558 cb60e91 a6bc02b 9a76dec a6bc02b 9a76dec a6bc02b 5a483f8 a6bc02b cb60e91 5a483f8 9a76dec a6bc02b 6277fe0 5a483f8 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 6277fe0 2601f1c 5a483f8 9a76dec 5a483f8 6277fe0 9a76dec 2601f1c 9a76dec 6277fe0 2601f1c 9a76dec 6277fe0 cb60e91 84a0a22 cb60e91 9a76dec 2601f1c a6bc02b 8673558 6277fe0 a6bc02b 2601f1c 84a0a22 9a76dec 2601f1c 9a76dec 2601f1c cb60e91 9a76dec ddd95f0 cb60e91 ddd95f0 5a483f8 9a76dec cb60e91 84a0a22 9a76dec a6bc02b 9a76dec cb60e91 84a0a22 9a76dec 6277fe0 cb60e91 5a483f8 cb60e91 5a483f8 6277fe0 cb60e91 8673558 5a483f8 cb60e91 6277fe0 84a0a22 9a76dec 84a0a22 cb60e91 5a483f8 cb60e91 84a0a22 9a76dec cb60e91 ddd95f0 a6bc02b 2601f1c 9a76dec 5a483f8 9a76dec 5a483f8 9a76dec 5a483f8 cb60e91 9a76dec cb60e91 ddd95f0 2601f1c 84a0a22 9a76dec 5a483f8 6277fe0 ddd95f0 a6bc02b 9a76dec f1d603c a6bc02b 6277fe0 5a483f8 cb60e91 5a483f8 998bc4b ddd95f0 a6bc02b 2601f1c cb60e91 9a76dec cb60e91 5a483f8 cb60e91 5a483f8 cb60e91 5a483f8 9a76dec cb60e91 a6bc02b cb60e91 2601f1c a6bc02b 5a483f8 9a76dec a6bc02b 9a76dec cb60e91 84a0a22 5a483f8 84a0a22 cb60e91 9a76dec 5a483f8 cb60e91 9a76dec 6277fe0 5a483f8 cb60e91 6277fe0 cb60e91 5a483f8 eb46c40 9a76dec cb60e91 a6bc02b cb60e91 9a76dec 5a483f8 cb60e91 6277fe0 cb60e91 6277fe0 a6bc02b 5a483f8 a6bc02b 5a483f8 2601f1c a6bc02b 5a483f8 84a0a22 5a483f8 a6bc02b 8673558 dc88746 a6bc02b 092a033 998bc4b ddd95f0 eb46c40 ddd95f0 cb60e91 5a483f8 a6bc02b 6277fe0 cb60e91 2601f1c 6277fe0 a6bc02b cb60e91 8673558 5a483f8 a6bc02b 5a483f8 9a76dec ddd95f0 5a483f8 84a0a22 5a483f8 cb60e91 84a0a22 cb60e91 5a483f8 cb60e91 5a483f8 cb60e91 2601f1c 5a483f8 cb60e91 266ae82 5a483f8 9a76dec 84a0a22 9a76dec 84a0a22 9a76dec 84a0a22 a6bc02b 9a76dec 5a483f8 a6bc02b 84a0a22 6a8e128 791c130 266ae82 2601f1c a6bc02b adb3bbe 06d22e5 d33040c 4ad44b9 eb46c40 a342a6b 575b933 d33040c 6277fe0 d33040c a342a6b d33040c 2601f1c a342a6b 266ae82 a342a6b 538b42b 5a483f8 2601f1c 5a483f8 8cdee8f 5a483f8 f1d603c 6267007 5a483f8 6267007 f1d603c 8cdee8f 6267007 5a483f8 6267007 f1d603c 8cdee8f 5a483f8 f1d603c 6267007 8cdee8f 5a483f8 6267007 5a483f8 f1d603c 5a483f8 f1d603c 5a483f8 f1d603c cf1cd44 6267007 5a483f8 f1d603c 5a483f8 6267007 5a483f8 b7b0651 5a483f8 22dcfa0 5a483f8 6267007 5a483f8 6267007 8cdee8f f1d603c 6267007 5a483f8 8cdee8f 6267007 8cdee8f 5a483f8 6267007 5a483f8 6267007 5a483f8 8cdee8f 5a483f8 6267007 5a483f8 8cdee8f 5a483f8 a6bc02b 5a483f8 266ae82 cb60e91 adb3bbe a6bc02b 5a483f8 a6bc02b 5a483f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
# app.py
# (Showing relevant parts that need modification)
import gradio as gr
import pandas as pd
import os
import logging
import matplotlib
matplotlib.use('Agg') # Set backend for Matplotlib to avoid GUI conflicts with Gradio
import matplotlib.pyplot as plt
import time # For profiling if needed
from datetime import datetime, timedelta # Added timedelta
import numpy as np
from collections import OrderedDict # To maintain section order
import asyncio # For async operations with the new agent
# --- Module Imports ---
from gradio_utils import get_url_user_token
# Functions from newly created/refactored modules
from config import (
LINKEDIN_CLIENT_ID_ENV_VAR, BUBBLE_APP_NAME_ENV_VAR,
BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR,
PLOT_ID_TO_FORMULA_KEY_MAP)
from state_manager import process_and_store_bubble_token
from sync_logic import sync_all_linkedin_data_orchestrator
from ui_generators import (
display_main_dashboard,
run_mentions_tab_display,
run_follower_stats_tab_display,
build_analytics_tab_plot_area, # EXPECTED TO RETURN: plot_ui_objects, section_titles_map
BOMB_ICON, EXPLORE_ICON, FORMULA_ICON, ACTIVE_ICON
)
from analytics_plot_generator import update_analytics_plots_figures, create_placeholder_plot
from formulas import PLOT_FORMULAS
# --- EXISTING CHATBOT MODULE IMPORTS ---
from chatbot_prompts import get_initial_insight_prompt_and_suggestions # MODIFIED IMPORT
from chatbot_handler import generate_llm_response
# --- END EXISTING CHATBOT MODULE IMPORTS ---
# --- NEW EMPLOYER BRANDING AGENT MODULE IMPORTS ---
try:
from eb_agent_module import (
EmployerBrandingAgent,
GENERATION_CONFIG_PARAMS as EB_AGENT_GEN_CONFIG, # Rename to avoid conflict
LLM_MODEL_NAME as EB_AGENT_LLM_MODEL, # Rename
GEMINI_EMBEDDING_MODEL_NAME as EB_AGENT_EMBEDDING_MODEL, # Rename
DEFAULT_SAFETY_SETTINGS as EB_AGENT_SAFETY_SETTINGS # Import safety settings
)
EB_AGENT_AVAILABLE = True
logging.info("Successfully imported EmployerBrandingAgent module.")
except ImportError as e:
logging.error(f"Failed to import EmployerBrandingAgent module: {e}", exc_info=True)
EB_AGENT_AVAILABLE = False
# Define dummy classes/variables if import fails, so app can still run
class EmployerBrandingAgent:
def __init__(self, *args, **kwargs): logging.error("EB Agent Dummy Class Initialized")
async def process_query(self, query, **kwargs): return "# Error: Employer Branding Agent module not loaded."
def update_dataframes(self, dfs): pass
def clear_chat_history(self): pass
EB_AGENT_GEN_CONFIG, EB_AGENT_LLM_MODEL, EB_AGENT_EMBEDDING_MODEL, EB_AGENT_SAFETY_SETTINGS = {}, None, None, pd.DataFrame(), {}
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Dashboard") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "bubble_post_stats_df": pd.DataFrame(),
"bubble_mentions_df": pd.DataFrame(), "bubble_follower_stats_df": pd.DataFrame(),
"fetch_count_for_api": 0, "url_user_token_temp_storage": None,
"config_date_col_posts": "published_at", "config_date_col_mentions": "date",
"config_date_col_followers": "date", "config_media_type_col": "media_type",
"config_eb_labels_col": "li_eb_label"
})
# States for existing analytics tab chatbot
chat_histories_st = gr.State({})
current_chat_plot_id_st = gr.State(None)
plot_data_for_chatbot_st = gr.State({})
# --- NEW: States for Employer Branding Agent Tab ---
eb_agent_chat_history_st = gr.State([])
# The agent instance itself will be created on-the-fly or managed if complex state is needed.
# For now, we'll re-initialize it with fresh data in the handler.
gr.Markdown("# 🚀 LinkedIn Organization Dashboard")
url_user_token_display = gr.Textbox(label="User Token (Nascosto)", interactive=False, visible=False)
status_box = gr.Textbox(label="Stato Generale Token LinkedIn", interactive=False, value="Inizializzazione...")
org_urn_display = gr.Textbox(label="URN Organizzazione (Nascosto)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display], api_name="get_url_params", show_progress=False)
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs() as tabs:
with gr.TabItem("1️⃣ Dashboard & Sync", id="tab_dashboard_sync"):
gr.Markdown("Il sistema controlla i dati esistenti da Bubble. 'Sincronizza' si attiva se sono necessari nuovi dati.")
sync_data_btn = gr.Button("🔄 Sincronizza Dati LinkedIn", variant="primary", visible=False, interactive=False)
sync_status_html_output = gr.HTML("<p style='text-align:center;'>Stato sincronizzazione...</p>")
dashboard_display_html = gr.HTML("<p style='text-align:center;'>Caricamento dashboard...</p>")
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_display_html],
show_progress="full"
)
with gr.TabItem("2️⃣ Analisi", id="tab_analytics"):
gr.Markdown("## 📈 Analisi Performance LinkedIn")
gr.Markdown("Seleziona un intervallo di date. Clicca i pulsanti (💣 Insights, ƒ Formula, 🧭 Esplora) su un grafico per azioni.")
analytics_status_md = gr.Markdown("Stato analisi...")
with gr.Row():
date_filter_selector = gr.Radio(
["Sempre", "Ultimi 7 Giorni", "Ultimi 30 Giorni", "Intervallo Personalizzato"],
label="Seleziona Intervallo Date", value="Sempre", scale=3
)
with gr.Column(scale=2):
custom_start_date_picker = gr.DateTime(label="Data Inizio", visible=False, include_time=False, type="datetime")
custom_end_date_picker = gr.DateTime(label="Data Fine", visible=False, include_time=False, type="datetime")
apply_filter_btn = gr.Button("🔍 Applica Filtro & Aggiorna Analisi", variant="primary")
def toggle_custom_date_pickers(selection):
is_custom = selection == "Intervallo Personalizzato"
return gr.update(visible=is_custom), gr.update(visible=is_custom)
date_filter_selector.change(
fn=toggle_custom_date_pickers,
inputs=[date_filter_selector],
outputs=[custom_start_date_picker, custom_end_date_picker]
)
plot_configs = [
{"label": "Numero di Follower nel Tempo", "id": "followers_count", "section": "Dinamiche dei Follower"},
{"label": "Tasso di Crescita Follower", "id": "followers_growth_rate", "section": "Dinamiche dei Follower"},
{"label": "Follower per Località", "id": "followers_by_location", "section": "Demografia Follower"},
{"label": "Follower per Ruolo (Funzione)", "id": "followers_by_role", "section": "Demografia Follower"},
{"label": "Follower per Settore", "id": "followers_by_industry", "section": "Demografia Follower"},
{"label": "Follower per Anzianità", "id": "followers_by_seniority", "section": "Demografia Follower"},
{"label": "Tasso di Engagement nel Tempo", "id": "engagement_rate", "section": "Approfondimenti Performance Post"},
{"label": "Copertura nel Tempo", "id": "reach_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Visualizzazioni nel Tempo", "id": "impressions_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Reazioni (Like) nel Tempo", "id": "likes_over_time", "section": "Approfondimenti Performance Post"},
{"label": "Click nel Tempo", "id": "clicks_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Condivisioni nel Tempo", "id": "shares_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Commenti nel Tempo", "id": "comments_over_time", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Ripartizione Commenti per Sentiment", "id": "comments_sentiment", "section": "Engagement Dettagliato Post nel Tempo"},
{"label": "Frequenza Post", "id": "post_frequency_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Formato", "id": "content_format_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Ripartizione Contenuti per Argomenti", "id": "content_topic_breakdown_cs", "section": "Analisi Strategia Contenuti"},
{"label": "Volume Menzioni nel Tempo (Dettaglio)", "id": "mention_analysis_volume", "section": "Analisi Menzioni (Dettaglio)"},
{"label": "Ripartizione Menzioni per Sentiment (Dettaglio)", "id": "mention_analysis_sentiment", "section": "Analisi Menzioni (Dettaglio)"}
]
assert len(plot_configs) == 19, "Mancata corrispondenza in plot_configs e grafici attesi."
unique_ordered_sections = list(OrderedDict.fromkeys(pc["section"] for pc in plot_configs))
num_unique_sections = len(unique_ordered_sections)
active_panel_action_state = gr.State(None)
explored_plot_id_state = gr.State(None)
plot_ui_objects = {}
section_titles_map = {}
with gr.Row(equal_height=False):
with gr.Column(scale=8) as plots_area_col:
ui_elements_tuple = build_analytics_tab_plot_area(plot_configs)
if isinstance(ui_elements_tuple, tuple) and len(ui_elements_tuple) == 2:
plot_ui_objects, section_titles_map = ui_elements_tuple
if not all(sec_name in section_titles_map for sec_name in unique_ordered_sections):
logging.error("section_titles_map from build_analytics_tab_plot_area is incomplete.")
for sec_name in unique_ordered_sections:
if sec_name not in section_titles_map:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
else:
logging.error("build_analytics_tab_plot_area did not return a tuple of (plot_ui_objects, section_titles_map).")
plot_ui_objects = ui_elements_tuple if isinstance(ui_elements_tuple, dict) else {}
for sec_name in unique_ordered_sections:
section_titles_map[sec_name] = gr.Markdown(f"### {sec_name} (Error Placeholder)")
with gr.Column(scale=4, visible=False) as global_actions_column_ui:
gr.Markdown("### 💡 Azioni Contestuali Grafico")
insights_chatbot_ui = gr.Chatbot(
label="Chat Insights", type="messages", height=450,
bubble_full_width=False, visible=False, show_label=False,
placeholder="L'analisi AI del grafico apparirà qui. Fai domande di approfondimento!"
)
insights_chat_input_ui = gr.Textbox(
label="La tua domanda:", placeholder="Chiedi all'AI riguardo a questo grafico...",
lines=2, visible=False, show_label=False
)
with gr.Row(visible=False) as insights_suggestions_row_ui:
insights_suggestion_1_btn = gr.Button(value="Suggerimento 1", size="sm", min_width=50)
insights_suggestion_2_btn = gr.Button(value="Suggerimento 2", size="sm", min_width=50)
insights_suggestion_3_btn = gr.Button(value="Suggerimento 3", size="sm", min_width=50)
formula_display_markdown_ui = gr.Markdown(
"I dettagli sulla formula/metodologia appariranno qui.", visible=False
)
formula_close_hint_md = gr.Markdown( # Component for the hint's visibility
"<p style='font-size:0.9em; text-align:center; margin-top:10px;'><em>Click the active ƒ button on the plot again to close this panel.</em></p>",
visible=False
)
# --- ASYNC HANDLERS FOR ANALYTICS TAB ---
async def handle_panel_action(
plot_id_clicked: str, action_type: str, current_active_action_from_state: dict,
current_chat_histories: dict, current_chat_plot_id: str,
current_plot_data_for_chatbot: dict, current_explored_plot_id: str
):
logging.info(f"Panel Action: '{action_type}' for plot '{plot_id_clicked}'. Active: {current_active_action_from_state}, Explored: {current_explored_plot_id}")
clicked_plot_config = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
if not clicked_plot_config:
logging.error(f"Config not found for plot_id {plot_id_clicked}")
num_plots = len(plot_configs)
error_list_len = 15 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[11] = current_active_action_from_state
error_list[12] = current_chat_plot_id
error_list[13] = current_chat_histories
error_list[14] = current_explored_plot_id
return error_list
clicked_plot_label = clicked_plot_config["label"]
clicked_plot_section = clicked_plot_config["section"]
hypothetical_new_active_state = {"plot_id": plot_id_clicked, "type": action_type}
is_toggling_off = current_active_action_from_state == hypothetical_new_active_state
action_col_visible_update = gr.update(visible=False)
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
formula_display_visible_update = gr.update(visible=False)
formula_close_hint_visible_update = gr.update(visible=False)
chatbot_content_update, s1_upd, s2_upd, s3_upd, formula_content_update = gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_active_action_state_to_set, new_current_chat_plot_id = None, current_chat_plot_id
updated_chat_histories, new_explored_plot_id_to_set = current_chat_histories, current_explored_plot_id
generated_panel_vis_updates = []
generated_bomb_btn_updates = []
generated_formula_btn_updates = []
generated_explore_btn_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
if is_toggling_off:
new_active_action_state_to_set = None
action_col_visible_update = gr.update(visible=False)
logging.info(f"Toggling OFF panel {action_type} for {plot_id_clicked}.")
for _ in plot_configs:
generated_bomb_btn_updates.append(gr.update(value=BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=FORMULA_ICON))
if current_explored_plot_id:
explored_cfg = next((p for p in plot_configs if p["id"] == current_explored_plot_id), None)
explored_sec = explored_cfg["section"] if explored_cfg else None
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == explored_sec))
for cfg in plot_configs:
is_exp = (cfg["id"] == current_explored_plot_id)
generated_panel_vis_updates.append(gr.update(visible=is_exp))
generated_explore_btn_updates.append(gr.update(value=ACTIVE_ICON if is_exp else EXPLORE_ICON))
else:
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=True))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
if action_type == "insights": new_current_chat_plot_id = None
else: # Toggling ON a new action or switching actions
new_active_action_state_to_set = hypothetical_new_active_state
action_col_visible_update = gr.update(visible=True)
new_explored_plot_id_to_set = None
logging.info(f"Toggling ON panel {action_type} for {plot_id_clicked}. Cancelling explore view if any.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == clicked_plot_section))
for cfg in plot_configs:
generated_panel_vis_updates.append(gr.update(visible=(cfg["id"] == plot_id_clicked)))
generated_explore_btn_updates.append(gr.update(value=EXPLORE_ICON))
for cfg_btn in plot_configs:
is_act_ins = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "insights"}
is_act_for = new_active_action_state_to_set == {"plot_id": cfg_btn["id"], "type": "formula"}
generated_bomb_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_ins else BOMB_ICON))
generated_formula_btn_updates.append(gr.update(value=ACTIVE_ICON if is_act_for else FORMULA_ICON))
if action_type == "insights":
insights_chatbot_visible_update, insights_chat_input_visible_update, insights_suggestions_row_visible_update = gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
new_current_chat_plot_id = plot_id_clicked
history = current_chat_histories.get(plot_id_clicked, [])
summary = current_plot_data_for_chatbot.get(plot_id_clicked, f"No summary for '{clicked_plot_label}'.")
if not history:
prompt, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
llm_hist = [{"role": "user", "content": prompt}]
resp = await generate_llm_response(prompt, plot_id_clicked, clicked_plot_label, llm_hist, summary) # This is your existing LLM call
history = [{"role": "assistant", "content": resp}]
updated_chat_histories = {**current_chat_histories, plot_id_clicked: history}
else:
_, sugg = get_initial_insight_prompt_and_suggestions(plot_id_clicked, clicked_plot_label, summary)
chatbot_content_update = gr.update(value=history)
s1_upd,s2_upd,s3_upd = gr.update(value=sugg[0] if sugg else "N/A"),gr.update(value=sugg[1] if len(sugg)>1 else "N/A"),gr.update(value=sugg[2] if len(sugg)>2 else "N/A")
elif action_type == "formula":
formula_display_visible_update = gr.update(visible=True)
formula_close_hint_visible_update = gr.update(visible=True)
f_key = PLOT_ID_TO_FORMULA_KEY_MAP.get(plot_id_clicked)
f_text = f"**Formula/Methodology for: {clicked_plot_label}** (ID: `{plot_id_clicked}`)\n\n"
if f_key and f_key in PLOT_FORMULAS:
f_data = PLOT_FORMULAS[f_key]
f_text += f"### {f_data['title']}\n\n{f_data['description']}\n\n**Calculation:**\n" + "\n".join([f"- {s}" for s in f_data['calculation_steps']])
else: f_text += "(No detailed formula information found.)"
formula_content_update = gr.update(value=f_text)
new_current_chat_plot_id = None
final_updates = [
action_col_visible_update, insights_chatbot_visible_update, chatbot_content_update,
insights_chat_input_visible_update, insights_suggestions_row_visible_update,
s1_upd, s2_upd, s3_upd, formula_display_visible_update, formula_content_update,
formula_close_hint_visible_update, # Corrected from formula_close_hint_md
new_active_action_state_to_set, new_current_chat_plot_id, updated_chat_histories,
new_explored_plot_id_to_set
]
final_updates.extend(generated_panel_vis_updates)
final_updates.extend(generated_bomb_btn_updates)
final_updates.extend(generated_formula_btn_updates)
final_updates.extend(generated_explore_btn_updates)
final_updates.extend(section_title_vis_updates)
logging.debug(f"handle_panel_action returning {len(final_updates)} updates. Expected {15 + 4*len(plot_configs) + num_unique_sections}.")
return final_updates
async def handle_chat_message_submission(user_message: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict ):
if not current_plot_id or not user_message.strip():
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
cfg = next((p for p in plot_configs if p["id"] == current_plot_id), None)
lbl = cfg["label"] if cfg else "Selected Plot"
summary = current_plot_data_for_chatbot.get(current_plot_id, f"No summary for '{lbl}'.")
hist_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(hist_for_plot, list): hist_for_plot = []
hist = hist_for_plot.copy() + [{"role": "user", "content": user_message}]
yield hist, gr.update(value=""), chat_histories
resp = await generate_llm_response(user_message, current_plot_id, lbl, hist, summary) # Existing LLM
hist.append({"role": "assistant", "content": resp})
updated_chat_histories = {**chat_histories, current_plot_id: hist}
yield hist, "", updated_chat_histories
async def handle_suggested_question_click(suggestion_text: str, current_plot_id: str, chat_histories: dict, current_plot_data_for_chatbot: dict):
if not current_plot_id or not suggestion_text.strip() or suggestion_text == "N/A":
current_history_for_plot = chat_histories.get(current_plot_id, [])
if not isinstance(current_history_for_plot, list): current_history_for_plot = []
yield current_history_for_plot, gr.update(value=""), chat_histories; return
async for update_chunk in handle_chat_message_submission(suggestion_text, current_plot_id, chat_histories, current_plot_data_for_chatbot):
yield update_chunk
def handle_explore_click(plot_id_clicked, current_explored_plot_id_from_state, current_active_panel_action_state):
# This function remains synchronous as per original
logging.info(f"Explore Click: Plot '{plot_id_clicked}'. Current Explored: {current_explored_plot_id_from_state}. Active Panel: {current_active_panel_action_state}")
num_plots = len(plot_configs)
if not plot_ui_objects:
logging.error("plot_ui_objects not populated for handle_explore_click.")
error_list_len = 4 + (4 * num_plots) + num_unique_sections
error_list = [gr.update()] * error_list_len
error_list[0] = current_explored_plot_id_from_state
error_list[2] = current_active_panel_action_state
return error_list
new_explored_id_to_set = None
is_toggling_off_explore = (plot_id_clicked == current_explored_plot_id_from_state)
action_col_upd = gr.update()
new_active_panel_state_upd = current_active_panel_action_state
formula_hint_upd = gr.update(visible=False)
panel_vis_updates = []
explore_btns_updates = []
bomb_btns_updates = []
formula_btns_updates = []
section_title_vis_updates = [gr.update()] * num_unique_sections
clicked_cfg = next((p for p in plot_configs if p["id"] == plot_id_clicked), None)
sec_of_clicked = clicked_cfg["section"] if clicked_cfg else None
if is_toggling_off_explore:
new_explored_id_to_set = None
logging.info(f"Stopping explore for {plot_id_clicked}. All plots/sections to be visible.")
for i in range(num_unique_sections): section_title_vis_updates[i] = gr.update(visible=True)
for _ in plot_configs:
panel_vis_updates.append(gr.update(visible=True))
explore_btns_updates.append(gr.update(value=EXPLORE_ICON))
bomb_btns_updates.append(gr.update())
formula_btns_updates.append(gr.update())
else:
new_explored_id_to_set = plot_id_clicked
logging.info(f"Exploring {plot_id_clicked}. Hiding other plots/sections.")
for i, sec_name in enumerate(unique_ordered_sections):
section_title_vis_updates[i] = gr.update(visible=(sec_name == sec_of_clicked))
for cfg in plot_configs:
is_target = (cfg["id"] == new_explored_id_to_set)
panel_vis_updates.append(gr.update(visible=is_target))
explore_btns_updates.append(gr.update(value=ACTIVE_ICON if is_target else EXPLORE_ICON))
if current_active_panel_action_state:
logging.info("Closing active insight/formula panel due to explore click.")
action_col_upd = gr.update(visible=False)
new_active_panel_state_upd = None
formula_hint_upd = gr.update(visible=False)
for _ in plot_configs:
bomb_btns_updates.append(gr.update(value=BOMB_ICON))
formula_btns_updates.append(gr.update(value=FORMULA_ICON))
else:
for _ in plot_configs:
bomb_btns_updates.append(gr.update())
formula_btns_updates.append(gr.update())
final_explore_updates = [
new_explored_id_to_set, action_col_upd, new_active_panel_state_upd, formula_hint_upd
]
final_explore_updates.extend(panel_vis_updates)
final_explore_updates.extend(explore_btns_updates)
final_explore_updates.extend(bomb_btns_updates)
final_explore_updates.extend(formula_btns_updates)
final_explore_updates.extend(section_title_vis_updates)
logging.debug(f"handle_explore_click returning {len(final_explore_updates)} updates. Expected {4 + 4*len(plot_configs) + num_unique_sections}.")
return final_explore_updates
_base_action_panel_ui_outputs = [
global_actions_column_ui, insights_chatbot_ui, insights_chatbot_ui,
insights_chat_input_ui, insights_suggestions_row_ui,
insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_display_markdown_ui,
formula_close_hint_md
]
_action_panel_state_outputs = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, explored_plot_id_state]
action_panel_outputs_list = _base_action_panel_ui_outputs + _action_panel_state_outputs
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
action_panel_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
_explore_base_outputs = [explored_plot_id_state, global_actions_column_ui, active_panel_action_state, formula_close_hint_md]
explore_outputs_list = _explore_base_outputs
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("panel_component", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("explore_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("bomb_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("formula_button", gr.update()) for pc in plot_configs])
explore_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
action_click_inputs = [active_panel_action_state, chat_histories_st, current_chat_plot_id_st, plot_data_for_chatbot_st, explored_plot_id_state]
explore_click_inputs = [explored_plot_id_state, active_panel_action_state]
def create_panel_action_handler(p_id, action_type_str):
async def _handler(curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id):
return await handle_panel_action(p_id, action_type_str, curr_active_val, curr_chats_val, curr_chat_pid, curr_plot_data, curr_explored_id)
return _handler
for config_item in plot_configs:
plot_id = config_item["id"]
if plot_id in plot_ui_objects:
ui_obj = plot_ui_objects[plot_id]
if ui_obj.get("bomb_button"):
ui_obj["bomb_button"].click(fn=create_panel_action_handler(plot_id, "insights"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_insights_{plot_id}")
if ui_obj.get("formula_button"):
ui_obj["formula_button"].click(fn=create_panel_action_handler(plot_id, "formula"), inputs=action_click_inputs, outputs=action_panel_outputs_list, api_name=f"action_formula_{plot_id}")
if ui_obj.get("explore_button"):
# Original lambda was not async, ensure it matches handle_explore_click signature and type
ui_obj["explore_button"].click(
fn=lambda current_explored_val, current_active_panel_val, p_id=plot_id: handle_explore_click(p_id, current_explored_val, current_active_panel_val),
inputs=explore_click_inputs,
outputs=explore_outputs_list,
api_name=f"action_explore_{plot_id}"
) # if handle_explore_click becomes async, this needs 'await' or be wrapped
else: logging.warning(f"UI object for plot_id '{plot_id}' not found for click handlers.")
chat_submission_outputs = [insights_chatbot_ui, insights_chat_input_ui, chat_histories_st]
chat_submission_inputs = [insights_chat_input_ui, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_chat_input_ui.submit(fn=handle_chat_message_submission, inputs=chat_submission_inputs, outputs=chat_submission_outputs, api_name="submit_chat_message")
suggestion_click_inputs_base = [current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
insights_suggestion_1_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_1_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_1")
insights_suggestion_2_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_2_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_2")
insights_suggestion_3_btn.click(fn=handle_suggested_question_click, inputs=[insights_suggestion_3_btn] + suggestion_click_inputs_base, outputs=chat_submission_outputs, api_name="click_suggestion_3")
def refresh_all_analytics_ui_elements(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, current_chat_histories_val):
# This function remains synchronous as per original
logging.info("Refreshing all analytics UI elements and resetting actions/chat.")
plot_gen_results = update_analytics_plots_figures(current_token_state_val, date_filter_val, custom_start_val, custom_end_val, plot_configs)
status_msg, gen_figs, new_summaries = plot_gen_results[0], plot_gen_results[1:-1], plot_gen_results[-1]
all_updates = [status_msg]
all_updates.extend(gen_figs if len(gen_figs) == len(plot_configs) else [create_placeholder_plot("Error", f"Fig missing {i}") for i in range(len(plot_configs))])
all_updates.extend([
gr.update(visible=False),
gr.update(value=[], visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(value="S1"), gr.update(value="S2"), gr.update(value="S3"),
gr.update(value="Formula details here.", visible=False),
gr.update(visible=False)
])
all_updates.extend([
None,
None,
{},
new_summaries
])
for _ in plot_configs:
all_updates.extend([
gr.update(value=BOMB_ICON),
gr.update(value=FORMULA_ICON),
gr.update(value=EXPLORE_ICON),
gr.update(visible=True)
])
all_updates.append(None)
all_updates.extend([gr.update(visible=True)] * num_unique_sections)
logging.info(f"Prepared {len(all_updates)} updates for analytics refresh. Expected {15 + 5*len(plot_configs) + num_unique_sections}.")
return all_updates
apply_filter_and_sync_outputs_list = [analytics_status_md]
apply_filter_and_sync_outputs_list.extend([plot_ui_objects.get(pc["id"], {}).get("plot_component", gr.update()) for pc in plot_configs])
_ui_resets_for_filter = [
global_actions_column_ui, insights_chatbot_ui, insights_chat_input_ui,
insights_suggestions_row_ui, insights_suggestion_1_btn, insights_suggestion_2_btn, insights_suggestion_3_btn,
formula_display_markdown_ui, formula_close_hint_md
]
apply_filter_and_sync_outputs_list.extend(_ui_resets_for_filter)
_state_resets_for_filter = [active_panel_action_state, current_chat_plot_id_st, chat_histories_st, plot_data_for_chatbot_st]
apply_filter_and_sync_outputs_list.extend(_state_resets_for_filter)
for pc in plot_configs:
pid = pc["id"]
apply_filter_and_sync_outputs_list.extend([
plot_ui_objects.get(pid, {}).get("bomb_button", gr.update()),
plot_ui_objects.get(pid, {}).get("formula_button", gr.update()),
plot_ui_objects.get(pid, {}).get("explore_button", gr.update()),
plot_ui_objects.get(pid, {}).get("panel_component", gr.update())
])
apply_filter_and_sync_outputs_list.append(explored_plot_id_state)
apply_filter_and_sync_outputs_list.extend([section_titles_map.get(s_name, gr.update()) for s_name in unique_ordered_sections])
apply_filter_btn.click(
fn=refresh_all_analytics_ui_elements,
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list, show_progress="full"
)
with gr.TabItem("3️⃣ Menzioni", id="tab_mentions"):
refresh_mentions_display_btn = gr.Button("🔄 Aggiorna Visualizzazione Menzioni", variant="secondary")
mentions_html = gr.HTML("Dati menzioni...")
mentions_sentiment_dist_plot = gr.Plot(label="Distribuzione Sentiment Menzioni")
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_sentiment_dist_plot],
show_progress="full"
)
with gr.TabItem("4️⃣ Statistiche Follower", id="tab_follower_stats"):
refresh_follower_stats_btn = gr.Button("🔄 Aggiorna Visualizzazione Statistiche Follower", variant="secondary")
follower_stats_html = gr.HTML("Statistiche follower...")
with gr.Row():
fs_plot_monthly_gains = gr.Plot(label="Guadagni Mensili Follower")
with gr.Row():
fs_plot_seniority = gr.Plot(label="Follower per Anzianità (Top 10 Organici)")
fs_plot_industry = gr.Plot(label="Follower per Settore (Top 10 Organici)")
refresh_follower_stats_btn.click(
fn=run_follower_stats_tab_display, inputs=[token_state],
outputs=[follower_stats_html, fs_plot_monthly_gains, fs_plot_seniority, fs_plot_industry],
show_progress="full"
)
# --- NEW: Tab 5 for Employer Branding Agent ---
with gr.TabItem("5️⃣ Agente AI Employer Branding", id="tab_eb_agent"):
gr.Markdown("## 🤖 Interagisci con l'Agente AI per l'Employer Branding")
if not EB_AGENT_AVAILABLE:
gr.Markdown("<p style='color:red;font-weight:bold;'>Attenzione: Il modulo dell'Agente AI per l'Employer Branding non è stato caricato correttamente. Controllare i log e l'installazione della libreria `google-generativeai` e la variabile d'ambiente `GEMINI_API_KEY`.</p>")
elif not os.getenv('GEMINI_API_KEY'):
gr.Markdown("<p style='color:orange;font-weight:bold;'>Attenzione: La variabile d'ambiente `GEMINI_API_KEY` non è impostata. Le funzionalità dell'Agente AI saranno limitate o non funzioneranno.</p>")
gr.Markdown(
"Fai domande sui tuoi dati LinkedIn (statistiche follower, post e menzioni) per ottenere insights e codice Pandas per analizzarli. "
"L'agente utilizza i dati attualmente disponibili nello stato dell'applicazione."
)
with gr.Row():
with gr.Column(scale=2):
eb_agent_chatbot_ui = gr.Chatbot(
label="Chat con Agente AI EB",
value=[[None, "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti ad analizzare i tuoi dati LinkedIn oggi? Chiedimi di generare codice Pandas o di fornire insights."]] if EB_AGENT_AVAILABLE else [[None, "Agente AI non disponibile."]],
bubble_full_width=False,
height=500,
placeholder="L'Agente AI è pronto. Chiedi pure..."
)
eb_agent_chat_input_ui = gr.Textbox(
label="La tua domanda:",
placeholder="Es: 'Mostrami le aziende dei miei follower nel settore tecnologico' o 'Qual è il sentiment medio delle mie menzioni?'",
lines=3,
interactive=EB_AGENT_AVAILABLE # Disable if agent not available
)
with gr.Row():
eb_agent_submit_btn = gr.Button("💬 Invia Messaggio", variant="primary", interactive=EB_AGENT_AVAILABLE)
eb_agent_clear_btn = gr.Button("🗑️ Cancella Chat", variant="stop", interactive=EB_AGENT_AVAILABLE)
with gr.Column(scale=1):
gr.Markdown("#### Schemi Dati Disponibili per l'Agente:")
eb_agent_schema_display_md = gr.Markdown("Gli schemi dei dati (follower, post, menzioni) verranno mostrati qui quando l'agente viene inizializzato con una query.")
eb_agent_status_md = gr.Markdown("Stato Agente: In attesa di input...")
# --- NEW: Handler for Employer Branding Agent Chat ---
eb_agent_instance_dict = {"agent": None} # To store agent instance across calls if needed, or re-init
async def handle_eb_agent_chat(user_message: str, chat_history_list: list, current_token_state: dict):
# Expected outputs: [eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md]
if not EB_AGENT_AVAILABLE or not os.getenv('GEMINI_API_KEY'):
no_key_msg = "L'Agente AI non è disponibile. Assicurati che GEMINI_API_KEY sia configurata."
# Ensure chat_history_list is mutable if it comes from gr.State
current_chat_history = list(chat_history_list) if chat_history_list else []
current_chat_history.append([user_message, no_key_msg])
yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value=no_key_msg), gr.update(value="Nessuno schema disponibile.")
return
current_chat_history = list(chat_history_list) if chat_history_list else []
if not user_message.strip():
yield current_chat_history, current_chat_history, gr.update(value=""), gr.update(value="Stato Agente: Per favore, inserisci una domanda."), gr.update() # No change to schema display
return
status_update_msg = "Stato Agente: Elaborazione della tua richiesta..."
# Show user message immediately, update status
# Add user message to current history before yielding
pending_history = current_chat_history + [[user_message, None]]
yield pending_history, pending_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update()
# Prepare DataFrames for the agent
df_follower_stats = current_token_state.get("bubble_follower_stats_df", pd.DataFrame())
df_posts = current_token_state.get("bubble_posts_df", pd.DataFrame())
df_post_stats = current_token_state.get("bubble_post_stats_df", pd.DataFrame())
df_mentions = current_token_state.get("bubble_mentions_df", pd.DataFrame())
dataframes_for_agent = {
"follower_stats": df_follower_stats.copy() if not df_follower_stats.empty else pd.DataFrame(columns=['no_data_follower_stats']),
"posts": df_posts.copy() if not df_posts.empty else pd.DataFrame(columns=['no_data_posts']),
"post_stats": df_post_stats.copy() if not df_post_stats.empty else pd.DataFrame(columns=['no_data_post_stats']),
"mentions": df_mentions.copy() if not df_mentions.empty else pd.DataFrame(columns=['no_data_mentions'])
}
schemas_text_for_display = "Schemi DataFrames inviati all'Agente:\n\n"
from eb_agent_module import get_all_schemas_representation # Assuming this is correctly imported in your main file
schemas_text_for_display += get_all_schemas_representation(dataframes_for_agent) # Using the mock or your actual function
max_schema_display_len = 1500
if len(schemas_text_for_display) > max_schema_display_len:
schemas_text_for_display = schemas_text_for_display[:max_schema_display_len] + "\n...(schemi troncati per la visualizzazione)"
current_agent = EmployerBrandingAgent( # Using the mock or your actual class
llm_model_name=EB_AGENT_LLM_MODEL,
generation_config_dict=EB_AGENT_GEN_CONFIG,
safety_settings_list=EB_AGENT_SAFETY_SETTINGS,
all_dataframes=dataframes_for_agent,
embedding_model_name=EB_AGENT_EMBEDDING_MODEL
)
agent_internal_history = []
for user_q, ai_r_obj in current_chat_history: # Iterate over the current history being built
if user_q: agent_internal_history.append({"role": "user", "content": user_q})
# ai_r_obj could be string, tuple (text, image_url), or None
if ai_r_obj:
if isinstance(ai_r_obj, tuple):
# If it's a (text, image_url) tuple, take the text part for agent's history
# Or combine them if your agent can handle it. For simplicity, just text.
text_for_agent_history = ai_r_obj[0] if ai_r_obj[0] else "Visual media displayed."
agent_internal_history.append({"role": "model", "content": text_for_agent_history})
elif isinstance(ai_r_obj, str):
agent_internal_history.append({"role": "model", "content": ai_r_obj})
# ADD THE CURRENT USER MESSAGE TO THE AGENT'S HISTORY
agent_internal_history.append({"role": "user", "content": user_message})
current_agent.chat_history = agent_internal_history
try:
init_success = await current_agent.initialize()
if not init_success:
error_msg = "Errore: Impossibile inizializzare l'agente AI."
updated_history = current_chat_history + [[user_message, error_msg]]
yield updated_history, updated_history, gr.update(value=""), gr.update(value="Stato Agente: Errore di inizializzazione"), gr.update(value=schemas_text_for_display)
return
logging.info(f"Sending to EB Agent. User: '{user_message}'. DF Keys: {list(dataframes_for_agent.keys())}")
# ai_response_dict is what the agent returns. Based on error, it's {'text': 'blob...'}
ai_response_dict = await current_agent.process_query(user_query=user_message)
bot_message_for_display = "Error: Agent returned an unexpected response." # Default
if isinstance(ai_response_dict, dict):
combined_message_blob = ai_response_dict.get("text")
if isinstance(combined_message_blob, str):
text_part = combined_message_blob
image_data_url = None
# Attempt to parse image data URL from the combined_message_blob
# This assumes the image data URL, if present, is on its own line or at the end.
lines = combined_message_blob.splitlines()
if lines:
possible_image_prefixes = [
"data:image/png;base64,",
"data:image/jpeg;base64,",
"data:image/gif;base64,",
"data:image/webp;base64,"
]
# Check lines from the end, as plot is likely at the end of the message
for i in range(len(lines) - 1, -1, -1):
current_line = lines[i].strip()
for prefix in possible_image_prefixes:
if current_line.startswith(prefix):
# Basic validation: check for typical base64 characters and some length
# This is a heuristic to ensure it's likely a valid base64 data string
if len(current_line) > len(prefix) + 20 and \
all(c in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=" for c in current_line[len(prefix):]):
image_data_url = current_line
# Reconstruct text_part from lines *before* this image line
text_part = "\n".join(lines[:i]).strip()
break # Found image prefix
if image_data_url:
break # Found image line
if image_data_url:
# If text_part became empty after extracting image, use None for text in tuple
bot_message_for_display = (text_part if text_part else None, image_data_url)
else:
# No image found or parsing failed, treat the whole blob as text
bot_message_for_display = combined_message_blob
else:
bot_message_for_display = "Agent returned a dictionary, but the 'text' field was not a string or was missing."
logging.warning(f"AI response dict 'text' field issue. Dict: {ai_response_dict}")
elif isinstance(ai_response_dict, str): # Agent returned a plain string
bot_message_for_display = ai_response_dict
else: # Fallback for other unexpected types
bot_message_for_display = f"Error: Agent returned an unexpected data type: {type(ai_response_dict)}."
logging.error(f"Unexpected AI response type: {type(ai_response_dict)}, content: {ai_response_dict}")
updated_history = current_chat_history + [[user_message, bot_message_for_display]]
status_update_msg = "Stato Agente: Risposta ricevuta."
yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)
except Exception as e:
logging.error(f"Error during EB Agent processing: {e}", exc_info=True)
error_msg_for_chat = f"# Errore dell'Agente AI:\n{type(e).__name__}: {str(e)}"
updated_history = current_chat_history + [[user_message, error_msg_for_chat]]
status_update_msg = f"Stato Agente: Errore - {type(e).__name__}"
yield updated_history, updated_history, gr.update(value=""), gr.update(value=status_update_msg), gr.update(value=schemas_text_for_display)
def clear_eb_agent_chat_history():
initial_msg = "Ciao! Sono il tuo Agente AI per l'Employer Branding. Come posso aiutarti?" if EB_AGENT_AVAILABLE else "Agente AI non disponibile."
return [[None, initial_msg]], [[None, initial_msg]], "Stato Agente: Chat resettata."
# Connect UI to Handler for EB Agent
eb_agent_submit_btn.click(
fn=handle_eb_agent_chat,
inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
api_name="eb_agent_chat_submit"
)
eb_agent_chat_input_ui.submit(
fn=handle_eb_agent_chat,
inputs=[eb_agent_chat_input_ui, eb_agent_chat_history_st, token_state],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_chat_input_ui, eb_agent_status_md, eb_agent_schema_display_md],
api_name="eb_agent_chat_enter"
)
eb_agent_clear_btn.click(
fn=clear_eb_agent_chat_history,
inputs=[],
outputs=[eb_agent_chatbot_ui, eb_agent_chat_history_st, eb_agent_status_md],
api_name="eb_agent_clear_chat"
)
# --- Sync Events (at the end of the app's 'with gr.Blocks()' context) ---
sync_event_part1 = sync_data_btn.click(fn=sync_all_linkedin_data_orchestrator, inputs=[token_state], outputs=[sync_status_html_output, token_state], show_progress="full")
sync_event_part2 = sync_event_part1.then(fn=process_and_store_bubble_token, inputs=[url_user_token_display, org_urn_display, token_state], outputs=[status_box, token_state, sync_data_btn], show_progress=False)
sync_event_part3 = sync_event_part2.then(fn=display_main_dashboard, inputs=[token_state], outputs=[dashboard_display_html], show_progress=False)
sync_event_final = sync_event_part3.then(
fn=refresh_all_analytics_ui_elements, # This is synchronous
inputs=[token_state, date_filter_selector, custom_start_date_picker, custom_end_date_picker, chat_histories_st],
outputs=apply_filter_and_sync_outputs_list,
show_progress="full"
)
if __name__ == "__main__":
if not os.environ.get(LINKEDIN_CLIENT_ID_ENV_VAR): logging.warning(f"ATTENZIONE: '{LINKEDIN_CLIENT_ID_ENV_VAR}' non impostata.")
if not all(os.environ.get(var) for var in [BUBBLE_APP_NAME_ENV_VAR, BUBBLE_API_KEY_PRIVATE_ENV_VAR, BUBBLE_API_ENDPOINT_ENV_VAR]):
logging.warning("ATTENZIONE: Variabili Bubble non impostate.")
if not EB_AGENT_AVAILABLE:
logging.error("L'Agente AI per l'Employer Branding non è disponibile a causa di errori di importazione.")
elif not os.getenv('GEMINI_API_KEY'):
logging.warning("ATTENZIONE: GEMINI_API_KEY non è impostata. L'Agente AI per l'Employer Branding potrebbe non funzionare.")
try: logging.info(f"Matplotlib: {matplotlib.__version__}, Backend: {matplotlib.get_backend()}")
except ImportError: logging.warning("Matplotlib non trovato.")
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|