Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,38 +4,50 @@ import json
|
|
| 4 |
import os
|
| 5 |
import logging
|
| 6 |
import html
|
| 7 |
-
import pandas as pd
|
| 8 |
-
from datetime import datetime # Used for pd.Timestamp
|
| 9 |
|
| 10 |
# Import functions from your custom modules
|
| 11 |
-
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
|
| 12 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
| 13 |
-
from mentions_dashboard import generate_mentions_dashboard
|
| 14 |
from gradio_utils import get_url_user_token
|
| 15 |
-
|
| 16 |
from Bubble_API_Calls import (
|
| 17 |
fetch_linkedin_token_from_bubble,
|
| 18 |
bulk_upload_to_bubble,
|
| 19 |
-
fetch_linkedin_posts_data_from_bubble
|
|
|
|
|
|
|
| 20 |
)
|
|
|
|
| 21 |
from Linkedin_Data_API_Calls import (
|
| 22 |
fetch_linkedin_posts_core,
|
| 23 |
fetch_comments,
|
| 24 |
-
analyze_sentiment,
|
| 25 |
compile_detailed_posts,
|
| 26 |
-
prepare_data_for_bubble
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# Configure logging
|
| 30 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 31 |
|
| 32 |
# --- Global Constants ---
|
| 33 |
-
|
| 34 |
-
DEFAULT_INITIAL_FETCH_COUNT = 10
|
| 35 |
-
# Key for post URN in data processed from LinkedIn (e.g., in detailed_posts)
|
| 36 |
LINKEDIN_POST_URN_KEY = 'id'
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def check_token_status(token_state):
|
| 41 |
"""Checks the status of the LinkedIn token."""
|
|
@@ -43,7 +55,7 @@ def check_token_status(token_state):
|
|
| 43 |
|
| 44 |
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
| 45 |
"""
|
| 46 |
-
Processes user token, fetches LinkedIn token, fetches Bubble posts,
|
| 47 |
and determines if an initial fetch or update is needed for LinkedIn posts.
|
| 48 |
Updates token state and UI for the sync button.
|
| 49 |
"""
|
|
@@ -51,18 +63,24 @@ def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
|
| 51 |
|
| 52 |
new_state = token_state.copy() if token_state else {
|
| 53 |
"token": None, "client_id": None, "org_urn": None,
|
| 54 |
-
"bubble_posts_df":
|
|
|
|
|
|
|
| 55 |
}
|
| 56 |
-
new_state.update({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn
|
| 59 |
|
| 60 |
client_id = os.environ.get("Linkedin_client_id")
|
| 61 |
-
if
|
| 62 |
-
|
| 63 |
-
new_state["client_id"] = "ENV VAR MISSING"
|
| 64 |
-
else:
|
| 65 |
-
new_state["client_id"] = client_id
|
| 66 |
|
| 67 |
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
| 68 |
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
|
@@ -83,286 +101,383 @@ def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
|
| 83 |
|
| 84 |
current_org_urn = new_state.get("org_urn")
|
| 85 |
if current_org_urn:
|
|
|
|
| 86 |
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
| 87 |
try:
|
| 88 |
-
|
| 89 |
-
if
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
-
logging.error(f"β Error fetching
|
| 96 |
-
new_state["
|
| 97 |
else:
|
| 98 |
-
logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
|
| 99 |
new_state["bubble_posts_df"] = pd.DataFrame()
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if new_state["bubble_posts_df"] is None or new_state["bubble_posts_df"].empty:
|
| 105 |
-
logging.info(f"βΉοΈ No posts found in Bubble or DataFrame is empty. Button to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts will be visible.")
|
| 106 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 107 |
-
button_update = gr.update(value=f"π Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} LinkedIn Posts", visible=True, interactive=True)
|
| 108 |
else:
|
| 109 |
try:
|
| 110 |
-
|
| 111 |
-
if
|
| 112 |
-
logging.warning(f"Date column '{
|
| 113 |
-
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 114 |
-
button_update = gr.update(value=f"π Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (Date Column Missing)", visible=True, interactive=True)
|
| 115 |
-
elif df_for_date_check[DATE_COLUMN_NAME].isnull().all():
|
| 116 |
-
logging.warning(f"Date column '{DATE_COLUMN_NAME}' contains all null values. Assuming initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
|
| 117 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 118 |
-
button_update = gr.update(value=f"π Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (Date Column Empty)", visible=True, interactive=True)
|
| 119 |
else:
|
| 120 |
-
|
| 121 |
-
last_post_date_utc =
|
| 122 |
-
|
| 123 |
if pd.isna(last_post_date_utc):
|
| 124 |
-
logging.warning(f"No valid dates found in '{DATE_COLUMN_NAME}' after conversion. Assuming initial fetch of {DEFAULT_INITIAL_FETCH_COUNT} posts.")
|
| 125 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 126 |
-
button_update = gr.update(value=f"π Fetch Initial {DEFAULT_INITIAL_FETCH_COUNT} (No Valid Dates)", visible=True, interactive=True)
|
| 127 |
else:
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
time_difference_days = (today_utc - last_post_date_utc_normalized).days
|
| 132 |
-
logging.info(f"Last post date (UTC, normalized): {last_post_date_utc_normalized}, Today (UTC, normalized): {today_utc}, Difference: {time_difference_days} days.")
|
| 133 |
-
|
| 134 |
-
if time_difference_days >= 7:
|
| 135 |
-
num_weeks = max(1, time_difference_days // 7)
|
| 136 |
-
fetch_count = num_weeks * 10
|
| 137 |
-
new_state['fetch_count_for_api'] = fetch_count
|
| 138 |
-
button_label = f"π Update Last {num_weeks} Week(s) (~{fetch_count} Posts)"
|
| 139 |
-
logging.info(f"Data is {time_difference_days} days old. Update needed for {num_weeks} weeks, ~{fetch_count} posts.")
|
| 140 |
-
button_update = gr.update(value=button_label, visible=True, interactive=True)
|
| 141 |
else:
|
| 142 |
-
|
| 143 |
-
new_state['fetch_count_for_api'] = 0
|
| 144 |
-
button_update = gr.update(visible=False, interactive=False)
|
| 145 |
except Exception as e:
|
| 146 |
-
logging.error(f"Error processing dates
|
| 147 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
token_status_message = check_token_status(new_state)
|
| 151 |
-
logging.info(f"Token processing complete.
|
| 152 |
return token_status_message, new_state, button_update
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
if not token_state or not token_state.get("token"):
|
| 157 |
-
logging.error("Access denied
|
| 158 |
-
return "
|
| 159 |
|
| 160 |
client_id = token_state.get("client_id")
|
| 161 |
token_dict = token_state.get("token")
|
| 162 |
org_urn = token_state.get('org_urn')
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
try:
|
| 178 |
-
logging.info(f"
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
if not processed_raw_posts:
|
| 182 |
-
logging.info("No posts retrieved from LinkedIn API.")
|
| 183 |
-
return "<p style='color:orange; text-align:center;'>βΉοΈ No new LinkedIn posts found to process.</p>"
|
| 184 |
-
|
| 185 |
-
# --- Filter out posts already in Bubble ---
|
| 186 |
-
existing_post_urns = set()
|
| 187 |
-
if bubble_posts_df is not None and not bubble_posts_df.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df.columns:
|
| 188 |
-
existing_post_urns = set(bubble_posts_df[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
|
| 189 |
-
logging.info(f"Found {len(existing_post_urns)} existing post URNs in Bubble data.")
|
| 190 |
-
else:
|
| 191 |
-
logging.info("No existing posts found in Bubble data or URN column missing; all fetched posts will be considered new.")
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
if str(post.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns
|
| 197 |
-
]
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
|
| 203 |
-
|
|
|
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
logging.info("Step 2: Fetching comments for new posts via LinkedIn API.")
|
| 209 |
-
# Adjust stats_map if it's keyed by URNs; ensure it's relevant for new_raw_posts
|
| 210 |
-
# For simplicity, assuming fetch_comments and subsequent steps can handle potentially fewer URNs
|
| 211 |
-
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
|
| 212 |
-
|
| 213 |
-
logging.info("Step 3: Analyzing sentiment for new posts.")
|
| 214 |
-
sentiments_per_post = analyze_sentiment(all_comments_data) # Assumes all_comments_data is now for new posts
|
| 215 |
-
|
| 216 |
-
logging.info("Step 4: Compiling detailed data for new posts.")
|
| 217 |
-
# Pass new_raw_posts to compile_detailed_posts
|
| 218 |
-
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post)
|
| 219 |
-
|
| 220 |
-
logging.info("Step 5: Preparing data for Bubble (only new posts).")
|
| 221 |
-
# Pass detailed_new_posts to prepare_data_for_bubble
|
| 222 |
-
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
|
| 223 |
-
|
| 224 |
-
logging.info(f"Step 6: Uploading {len(li_posts)} new posts and their related data to Bubble.")
|
| 225 |
-
if li_posts: # Ensure there's actually something to upload
|
| 226 |
-
bulk_upload_to_bubble(li_posts, "LI_posts")
|
| 227 |
-
if li_post_stats:
|
| 228 |
-
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
| 229 |
-
if li_post_comments:
|
| 230 |
-
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
|
| 231 |
-
|
| 232 |
-
action_message = f"uploaded {len(li_posts)} new post(s)"
|
| 233 |
-
else:
|
| 234 |
-
action_message = "found no new posts to upload after detailed processing"
|
| 235 |
-
logging.info("No new posts to upload after final preparation for Bubble.")
|
| 236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
except ValueError as ve:
|
| 243 |
-
logging.error(f"ValueError during
|
| 244 |
-
return f"
|
| 245 |
except Exception as e:
|
| 246 |
-
logging.exception("
|
| 247 |
-
return "
|
|
|
|
| 248 |
|
| 249 |
-
def
|
|
|
|
| 250 |
if not token_state or not token_state.get("token"):
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
else:
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
|
| 258 |
def guarded_fetch_analytics(token_state):
|
| 259 |
if not token_state or not token_state.get("token"):
|
| 260 |
-
return ("β Access denied. No token
|
| 261 |
-
|
| 262 |
-
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
|
| 263 |
|
| 264 |
-
|
|
|
|
|
|
|
| 265 |
if not token_state or not token_state.get("token"):
|
| 266 |
return ("β Access denied. No token available for mentions.", None)
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
# --- Gradio UI Blocks ---
|
| 270 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
| 271 |
-
title="LinkedIn Post Viewer & Analytics") as app:
|
| 272 |
|
| 273 |
token_state = gr.State(value={
|
| 274 |
-
"token": None,
|
| 275 |
-
"
|
| 276 |
-
"
|
| 277 |
-
"
|
| 278 |
-
"fetch_count_for_api": 0
|
| 279 |
})
|
| 280 |
|
| 281 |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
|
| 282 |
-
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
|
| 283 |
-
|
| 284 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
| 285 |
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
|
| 286 |
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
|
| 287 |
|
| 288 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
with gr.Tabs():
|
| 291 |
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
|
| 292 |
-
gr.Markdown("System checks for existing data
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
value="π Sync LinkedIn Posts",
|
| 296 |
-
variant="primary",
|
| 297 |
-
visible=False,
|
| 298 |
-
interactive=False
|
| 299 |
-
)
|
| 300 |
-
|
| 301 |
-
dashboard_html_output = gr.HTML(
|
| 302 |
-
"<p style='text-align: center; color: #555;'>System initializing... "
|
| 303 |
-
"Checking for existing data in Bubble and LinkedIn token.</p>"
|
| 304 |
-
)
|
| 305 |
|
|
|
|
| 306 |
org_urn_display.change(
|
| 307 |
-
fn=
|
| 308 |
-
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 309 |
-
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
|
| 310 |
-
)
|
| 311 |
-
url_user_token_display.change(
|
| 312 |
-
fn=process_and_store_bubble_token,
|
| 313 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 314 |
-
outputs=[status_box, token_state,
|
| 315 |
)
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
fn=
|
| 319 |
inputs=[token_state],
|
| 320 |
-
outputs=[dashboard_html_output]
|
| 321 |
).then(
|
| 322 |
-
fn=process_and_store_bubble_token,
|
| 323 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 324 |
-
outputs=[status_box, token_state,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
)
|
| 326 |
|
| 327 |
with gr.TabItem("2οΈβ£ Analytics"):
|
| 328 |
-
gr.Markdown("View follower count and monthly gains for your organization (requires LinkedIn token).")
|
| 329 |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
|
| 330 |
-
follower_count = gr.Markdown("
|
| 331 |
-
|
| 332 |
-
with gr.Row():
|
| 333 |
-
|
| 334 |
-
with gr.Row():
|
| 335 |
-
|
| 336 |
-
with gr.Row():
|
| 337 |
-
interaction_plot = gr.Plot()
|
| 338 |
-
with gr.Row():
|
| 339 |
-
eb_plot = gr.Plot()
|
| 340 |
-
with gr.Row():
|
| 341 |
-
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
|
| 342 |
-
|
| 343 |
fetch_analytics_btn.click(
|
| 344 |
-
fn=guarded_fetch_analytics,
|
| 345 |
-
inputs=[token_state],
|
| 346 |
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
|
| 347 |
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
|
| 348 |
)
|
| 349 |
|
| 350 |
with gr.TabItem("3οΈβ£ Mentions"):
|
| 351 |
-
gr.
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
fn=run_mentions_and_load,
|
| 357 |
-
inputs=[token_state],
|
| 358 |
outputs=[mentions_html, mentions_plot]
|
| 359 |
)
|
| 360 |
|
| 361 |
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
| 362 |
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
| 363 |
|
| 364 |
-
|
| 365 |
if __name__ == "__main__":
|
| 366 |
if not os.environ.get("Linkedin_client_id"):
|
| 367 |
-
logging.warning("WARNING:
|
| 368 |
-
app.launch(server_name="0.0.0.0", server_port=7860
|
|
|
|
| 4 |
import os
|
| 5 |
import logging
|
| 6 |
import html
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from datetime import datetime, timedelta # Used for pd.Timestamp and date checks
|
| 9 |
|
| 10 |
# Import functions from your custom modules
|
|
|
|
| 11 |
from analytics_fetch_and_rendering import fetch_and_render_analytics
|
|
|
|
| 12 |
from gradio_utils import get_url_user_token
|
| 13 |
+
|
| 14 |
from Bubble_API_Calls import (
|
| 15 |
fetch_linkedin_token_from_bubble,
|
| 16 |
bulk_upload_to_bubble,
|
| 17 |
+
fetch_linkedin_posts_data_from_bubble,
|
| 18 |
+
# You need to implement this function in Bubble_API_Calls.py:
|
| 19 |
+
fetch_linkedin_mentions_data_from_bubble
|
| 20 |
)
|
| 21 |
+
|
| 22 |
from Linkedin_Data_API_Calls import (
|
| 23 |
fetch_linkedin_posts_core,
|
| 24 |
fetch_comments,
|
| 25 |
+
analyze_sentiment, # For post comments
|
| 26 |
compile_detailed_posts,
|
| 27 |
+
prepare_data_for_bubble, # For posts, stats, comments
|
| 28 |
+
fetch_linkedin_mentions_core,
|
| 29 |
+
analyze_mentions_sentiment, # For individual mentions
|
| 30 |
+
compile_detailed_mentions, # Compiles to user-specified format
|
| 31 |
+
prepare_mentions_for_bubble # Prepares user-specified format for Bubble
|
| 32 |
)
|
| 33 |
|
| 34 |
# Configure logging
|
| 35 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 36 |
|
| 37 |
# --- Global Constants ---
|
| 38 |
+
DEFAULT_INITIAL_FETCH_COUNT = 10
|
|
|
|
|
|
|
| 39 |
LINKEDIN_POST_URN_KEY = 'id'
|
| 40 |
+
BUBBLE_POST_URN_COLUMN_NAME = 'id'
|
| 41 |
+
BUBBLE_POST_DATE_COLUMN_NAME = 'published_at'
|
| 42 |
+
|
| 43 |
+
# Constants for Mentions - these should match the keys used in the data prepared for Bubble
|
| 44 |
+
BUBBLE_MENTIONS_TABLE_NAME = "LI_mentions" # Your Bubble table name for mentions
|
| 45 |
+
BUBBLE_MENTIONS_ID_COLUMN_NAME = "id" # Column in Bubble storing the mention's source post URN (share_urn)
|
| 46 |
+
BUBBLE_MENTIONS_DATE_COLUMN_NAME = "date" # Column in Bubble storing the mention's publication date
|
| 47 |
+
|
| 48 |
+
DEFAULT_MENTIONS_INITIAL_FETCH_COUNT = 20
|
| 49 |
+
DEFAULT_MENTIONS_UPDATE_FETCH_COUNT = 10
|
| 50 |
+
|
| 51 |
|
| 52 |
def check_token_status(token_state):
|
| 53 |
"""Checks the status of the LinkedIn token."""
|
|
|
|
| 55 |
|
| 56 |
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
|
| 57 |
"""
|
| 58 |
+
Processes user token, fetches LinkedIn token, fetches existing Bubble posts & mentions,
|
| 59 |
and determines if an initial fetch or update is needed for LinkedIn posts.
|
| 60 |
Updates token state and UI for the sync button.
|
| 61 |
"""
|
|
|
|
| 63 |
|
| 64 |
new_state = token_state.copy() if token_state else {
|
| 65 |
"token": None, "client_id": None, "org_urn": None,
|
| 66 |
+
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
|
| 67 |
+
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
|
| 68 |
+
"url_user_token_temp_storage": None
|
| 69 |
}
|
| 70 |
+
new_state.update({
|
| 71 |
+
"org_urn": org_urn,
|
| 72 |
+
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()),
|
| 73 |
+
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
|
| 74 |
+
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()),
|
| 75 |
+
"fetch_count_for_mentions_api": new_state.get("fetch_count_for_mentions_api", 0),
|
| 76 |
+
"url_user_token_temp_storage": url_user_token # Store for potential re-use
|
| 77 |
+
})
|
| 78 |
|
| 79 |
+
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn Data")
|
| 80 |
|
| 81 |
client_id = os.environ.get("Linkedin_client_id")
|
| 82 |
+
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
|
| 83 |
+
if not client_id: logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
|
| 86 |
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
|
|
|
|
| 101 |
|
| 102 |
current_org_urn = new_state.get("org_urn")
|
| 103 |
if current_org_urn:
|
| 104 |
+
# Fetch Posts from Bubble
|
| 105 |
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
|
| 106 |
try:
|
| 107 |
+
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, "LI_posts")
|
| 108 |
+
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
|
| 109 |
+
if error_message_posts: logging.warning(f"Error from fetch_linkedin_posts_data_from_bubble: {error_message_posts}.")
|
| 110 |
+
except Exception as e:
|
| 111 |
+
logging.error(f"β Error fetching posts from Bubble: {e}.")
|
| 112 |
+
new_state["bubble_posts_df"] = pd.DataFrame()
|
| 113 |
+
|
| 114 |
+
# Fetch Mentions from Bubble
|
| 115 |
+
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
|
| 116 |
+
try:
|
| 117 |
+
fetched_mentions_df, error_message_mentions = fetch_linkedin_mentions_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
|
| 118 |
+
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
|
| 119 |
+
if error_message_mentions: logging.warning(f"Error from fetch_linkedin_mentions_data_from_bubble: {error_message_mentions}.")
|
| 120 |
except Exception as e:
|
| 121 |
+
logging.error(f"β Error fetching mentions from Bubble: {e}.")
|
| 122 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
| 123 |
else:
|
| 124 |
+
logging.warning("Org URN not available in state. Cannot fetch posts or mentions from Bubble.")
|
| 125 |
new_state["bubble_posts_df"] = pd.DataFrame()
|
| 126 |
+
new_state["bubble_mentions_df"] = pd.DataFrame()
|
| 127 |
|
| 128 |
+
# Determine fetch count for Posts API
|
| 129 |
+
if new_state["bubble_posts_df"].empty:
|
| 130 |
+
logging.info(f"βΉοΈ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
|
|
|
|
|
|
|
| 131 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
|
|
|
| 132 |
else:
|
| 133 |
try:
|
| 134 |
+
df_posts_check = new_state["bubble_posts_df"].copy()
|
| 135 |
+
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
|
| 136 |
+
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing/all null. Initial fetch.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
|
|
|
| 138 |
else:
|
| 139 |
+
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
| 140 |
+
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
|
|
|
|
| 141 |
if pd.isna(last_post_date_utc):
|
|
|
|
| 142 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
|
|
|
| 143 |
else:
|
| 144 |
+
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
|
| 145 |
+
if days_diff >= 7:
|
| 146 |
+
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
else:
|
| 148 |
+
new_state['fetch_count_for_api'] = 0
|
|
|
|
|
|
|
| 149 |
except Exception as e:
|
| 150 |
+
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch.")
|
| 151 |
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
|
| 152 |
+
|
| 153 |
+
# Determine if mentions need fetching (actual count decided in sync_linkedin_mentions)
|
| 154 |
+
mentions_need_sync = False
|
| 155 |
+
if new_state["bubble_mentions_df"].empty:
|
| 156 |
+
mentions_need_sync = True
|
| 157 |
+
else:
|
| 158 |
+
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
|
| 159 |
+
mentions_need_sync = True
|
| 160 |
+
else:
|
| 161 |
+
df_mentions_check = new_state["bubble_mentions_df"].copy()
|
| 162 |
+
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
| 163 |
+
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
|
| 164 |
+
if pd.isna(last_mention_date_utc) or (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
|
| 165 |
+
mentions_need_sync = True
|
| 166 |
+
|
| 167 |
+
if new_state['fetch_count_for_api'] > 0 or (new_state["token"] and mentions_need_sync):
|
| 168 |
+
button_label = "π Sync LinkedIn Data"
|
| 169 |
+
if new_state['fetch_count_for_api'] > 0 and mentions_need_sync:
|
| 170 |
+
button_label += " (Posts & Mentions)"
|
| 171 |
+
elif new_state['fetch_count_for_api'] > 0:
|
| 172 |
+
button_label += f" ({new_state['fetch_count_for_api']} Posts)"
|
| 173 |
+
elif mentions_need_sync:
|
| 174 |
+
button_label += " (Mentions)"
|
| 175 |
+
button_update = gr.update(value=button_label, visible=True, interactive=True)
|
| 176 |
+
else:
|
| 177 |
+
button_update = gr.update(visible=False, interactive=False)
|
| 178 |
|
| 179 |
token_status_message = check_token_status(new_state)
|
| 180 |
+
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Post Fetch: {new_state['fetch_count_for_api']}. Mentions sync needed: {mentions_need_sync}")
|
| 181 |
return token_status_message, new_state, button_update
|
| 182 |
|
| 183 |
+
|
| 184 |
+
def sync_linkedin_mentions(token_state):
|
| 185 |
+
"""Fetches and syncs LinkedIn mentions to Bubble based on defined logic."""
|
| 186 |
+
logging.info("Starting LinkedIn mentions sync process.")
|
| 187 |
if not token_state or not token_state.get("token"):
|
| 188 |
+
logging.error("Mentions sync: Access denied. No LinkedIn token.")
|
| 189 |
+
return "Mentions: No token. ", token_state
|
| 190 |
|
| 191 |
client_id = token_state.get("client_id")
|
| 192 |
token_dict = token_state.get("token")
|
| 193 |
org_urn = token_state.get('org_urn')
|
| 194 |
+
bubble_mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
|
| 195 |
+
|
| 196 |
+
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
|
| 197 |
+
logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).")
|
| 198 |
+
return "Mentions: Config error. ", token_state
|
| 199 |
+
|
| 200 |
+
fetch_count_for_mentions_api = 0
|
| 201 |
+
if bubble_mentions_df.empty:
|
| 202 |
+
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
|
| 203 |
+
logging.info(f"No mentions in Bubble. Fetching initial {fetch_count_for_mentions_api} mentions.")
|
| 204 |
+
else:
|
| 205 |
+
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in bubble_mentions_df.columns or bubble_mentions_df[BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
|
| 206 |
+
logging.warning(f"Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' for mentions missing or all null. Fetching initial.")
|
| 207 |
+
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
|
| 208 |
+
else:
|
| 209 |
+
mentions_df_copy = bubble_mentions_df.copy()
|
| 210 |
+
mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
|
| 211 |
+
last_mention_date_utc = mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
|
| 212 |
+
|
| 213 |
+
if pd.isna(last_mention_date_utc):
|
| 214 |
+
logging.warning("No valid dates in mentions data. Fetching initial.")
|
| 215 |
+
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
|
| 216 |
+
else:
|
| 217 |
+
days_since_last_mention = (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days
|
| 218 |
+
logging.info(f"Days since last mention: {days_since_last_mention}")
|
| 219 |
+
if days_since_last_mention >= 7:
|
| 220 |
+
fetch_count_for_mentions_api = DEFAULT_MENTIONS_UPDATE_FETCH_COUNT
|
| 221 |
+
logging.info(f"Last mention older than 7 days. Fetching update of {fetch_count_for_mentions_api} mentions.")
|
| 222 |
+
else:
|
| 223 |
+
logging.info("Mentions data is fresh. No API fetch needed.")
|
| 224 |
|
| 225 |
+
token_state["fetch_count_for_mentions_api"] = fetch_count_for_mentions_api
|
| 226 |
+
|
| 227 |
+
if fetch_count_for_mentions_api == 0:
|
| 228 |
+
return "Mentions: Up-to-date. ", token_state
|
| 229 |
+
|
| 230 |
try:
|
| 231 |
+
logging.info(f"Fetching {fetch_count_for_mentions_api} core mentions from LinkedIn for org_urn: {org_urn}")
|
| 232 |
+
processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
if not processed_raw_mentions:
|
| 235 |
+
logging.info("No mentions retrieved from LinkedIn API.")
|
| 236 |
+
return "Mentions: None found via API. ", token_state
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
existing_mention_ids = set()
|
| 239 |
+
if not bubble_mentions_df.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df.columns:
|
| 240 |
+
existing_mention_ids = set(bubble_mentions_df[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str))
|
| 241 |
|
| 242 |
+
sentiments_map = analyze_mentions_sentiment(processed_raw_mentions)
|
| 243 |
+
all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map)
|
| 244 |
|
| 245 |
+
new_compiled_mentions_to_upload = [
|
| 246 |
+
m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids
|
| 247 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
if not new_compiled_mentions_to_upload:
|
| 250 |
+
logging.info("All fetched LinkedIn mentions are already present in Bubble.")
|
| 251 |
+
return "Mentions: All fetched already in Bubble. ", token_state
|
| 252 |
+
|
| 253 |
+
logging.info(f"Identified {len(new_compiled_mentions_to_upload)} new mentions to process after filtering.")
|
| 254 |
+
bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload)
|
| 255 |
|
| 256 |
+
if bubble_ready_mentions:
|
| 257 |
+
logging.info(f"Uploading {len(bubble_ready_mentions)} new mentions to Bubble table: {BUBBLE_MENTIONS_TABLE_NAME}.")
|
| 258 |
+
bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME)
|
| 259 |
+
return f"Mentions: Synced {len(bubble_ready_mentions)} new. ", token_state
|
| 260 |
+
else:
|
| 261 |
+
logging.info("No new mentions to upload to Bubble after final preparation.")
|
| 262 |
+
return "Mentions: No new ones to upload. ", token_state
|
| 263 |
|
| 264 |
except ValueError as ve:
|
| 265 |
+
logging.error(f"ValueError during mentions sync: {ve}")
|
| 266 |
+
return f"Mentions Error: {html.escape(str(ve))}. ", token_state
|
| 267 |
except Exception as e:
|
| 268 |
+
logging.exception("Unexpected error in sync_linkedin_mentions.")
|
| 269 |
+
return "Mentions: Unexpected error. ", token_state
|
| 270 |
+
|
| 271 |
|
| 272 |
+
def guarded_fetch_posts_and_mentions(token_state):
|
| 273 |
+
logging.info("Starting guarded_fetch_posts_and_mentions process.")
|
| 274 |
if not token_state or not token_state.get("token"):
|
| 275 |
+
logging.error("Access denied. No LinkedIn token available.")
|
| 276 |
+
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available.</p>", token_state
|
| 277 |
+
|
| 278 |
+
client_id = token_state.get("client_id")
|
| 279 |
+
token_dict = token_state.get("token")
|
| 280 |
+
org_urn = token_state.get('org_urn')
|
| 281 |
+
fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0)
|
| 282 |
+
bubble_posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
|
| 283 |
+
posts_sync_message = ""
|
| 284 |
+
|
| 285 |
+
if not org_urn: return "<p style='color:red;'>β Config error: Org URN missing.</p>", token_state
|
| 286 |
+
if not client_id or client_id == "ENV VAR MISSING": return "<p style='color:red;'>β Config error: Client ID missing.</p>", token_state
|
| 287 |
+
|
| 288 |
+
if fetch_count_for_posts_api == 0:
|
| 289 |
+
posts_sync_message = "Posts: Already up-to-date. "
|
| 290 |
else:
|
| 291 |
+
try:
|
| 292 |
+
logging.info(f"Fetching {fetch_count_for_posts_api} core posts for org_urn: {org_urn}.")
|
| 293 |
+
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api)
|
| 294 |
+
if not processed_raw_posts: posts_sync_message = "Posts: None found via API. "
|
| 295 |
+
else:
|
| 296 |
+
existing_post_urns = set()
|
| 297 |
+
if not bubble_posts_df.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df.columns:
|
| 298 |
+
existing_post_urns = set(bubble_posts_df[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
|
| 299 |
+
new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns]
|
| 300 |
+
if not new_raw_posts: posts_sync_message = "Posts: All fetched already in Bubble. "
|
| 301 |
+
else:
|
| 302 |
+
post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)]
|
| 303 |
+
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
|
| 304 |
+
sentiments_per_post = analyze_sentiment(all_comments_data)
|
| 305 |
+
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post)
|
| 306 |
+
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
|
| 307 |
+
if li_posts:
|
| 308 |
+
bulk_upload_to_bubble(li_posts, "LI_posts")
|
| 309 |
+
if li_post_stats: bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
|
| 310 |
+
if li_post_comments: bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
|
| 311 |
+
posts_sync_message = f"Posts: Synced {len(li_posts)} new. "
|
| 312 |
+
else: posts_sync_message = "Posts: No new ones to upload. "
|
| 313 |
+
except ValueError as ve: posts_sync_message = f"Posts Error: {html.escape(str(ve))}. "
|
| 314 |
+
except Exception: logging.exception("Posts processing error."); posts_sync_message = "Posts: Unexpected error. "
|
| 315 |
+
|
| 316 |
+
mentions_sync_message, updated_token_state = sync_linkedin_mentions(token_state)
|
| 317 |
+
token_state = updated_token_state # Ensure state is updated after mentions sync
|
| 318 |
+
|
| 319 |
+
# Re-fetch data from Bubble to update DataFrames in state for immediate display refresh
|
| 320 |
+
if org_urn:
|
| 321 |
+
try:
|
| 322 |
+
fetched_posts_df, _ = fetch_linkedin_posts_data_from_bubble(org_urn, "LI_posts")
|
| 323 |
+
token_state["bubble_posts_df"] = pd.DataFrame() if fetched_posts_df is None else fetched_posts_df
|
| 324 |
+
fetched_mentions_df, _ = fetch_linkedin_mentions_data_from_bubble(org_urn, BUBBLE_MENTIONS_TABLE_NAME)
|
| 325 |
+
token_state["bubble_mentions_df"] = pd.DataFrame() if fetched_mentions_df is None else fetched_mentions_df
|
| 326 |
+
logging.info("Refreshed posts and mentions DataFrames in state from Bubble after sync.")
|
| 327 |
+
except Exception as e:
|
| 328 |
+
logging.error(f"Error re-fetching data from Bubble post-sync: {e}")
|
| 329 |
+
|
| 330 |
+
final_message = f"<p style='color:green; text-align:center;'>β
Sync Attempted. {posts_sync_message} {mentions_sync_message}</p>"
|
| 331 |
+
return final_message, token_state
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def display_main_dashboard(token_state):
|
| 335 |
+
if not token_state or not token_state.get("token"):
|
| 336 |
+
return "β Access denied. No token available for dashboard."
|
| 337 |
+
|
| 338 |
+
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
|
| 339 |
+
posts_html = f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>"
|
| 340 |
+
if not posts_df.empty:
|
| 341 |
+
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment'] if col in posts_df.columns] # Example columns
|
| 342 |
+
posts_html += posts_df[cols_to_show_posts].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_posts else "<p>No post data to display or columns missing.</p>"
|
| 343 |
+
else: posts_html += "<p>No posts loaded from Bubble.</p>"
|
| 344 |
+
|
| 345 |
+
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
|
| 346 |
+
mentions_html = f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>"
|
| 347 |
+
if not mentions_df.empty:
|
| 348 |
+
# Using the exact column names as defined for Bubble upload: date, id, mention_text, organization_urn, sentiment_label
|
| 349 |
+
cols_to_show_mentions = [col for col in ["date", "mention_text", "sentiment_label"] if col in mentions_df.columns]
|
| 350 |
+
mentions_html += mentions_df[cols_to_show_mentions].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_mentions else "<p>No mention data to display or columns missing.</p>"
|
| 351 |
+
else: mentions_html += "<p>No mentions loaded from Bubble.</p>"
|
| 352 |
+
|
| 353 |
+
return f"<div style='padding:10px;'><h3>Dashboard Overview</h3>{posts_html}<hr/>{mentions_html}</div>"
|
| 354 |
|
| 355 |
|
| 356 |
def guarded_fetch_analytics(token_state):
|
| 357 |
if not token_state or not token_state.get("token"):
|
| 358 |
+
return ("β Access denied. No token.", None, None, None, None, None, None, None)
|
| 359 |
+
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"), token_state.get("org_urn"))
|
|
|
|
| 360 |
|
| 361 |
+
|
| 362 |
+
def run_mentions_tab_display(token_state):
|
| 363 |
+
logging.info("Updating Mentions Tab display.")
|
| 364 |
if not token_state or not token_state.get("token"):
|
| 365 |
return ("β Access denied. No token available for mentions.", None)
|
| 366 |
+
|
| 367 |
+
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
|
| 368 |
+
if mentions_df.empty:
|
| 369 |
+
return ("<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None)
|
| 370 |
+
|
| 371 |
+
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
|
| 372 |
+
# Columns expected from Bubble: date, id, mention_text, organization_urn, sentiment_label
|
| 373 |
+
display_columns = [col for col in ["date", "mention_text", "sentiment_label", "id"] if col in mentions_df.columns]
|
| 374 |
+
|
| 375 |
+
if not display_columns:
|
| 376 |
+
html_parts.append("<p>Required columns for mentions display are missing from Bubble data.</p>")
|
| 377 |
+
else:
|
| 378 |
+
mentions_df_sorted = mentions_df.sort_values(by="date", ascending=False, errors='coerce') if "date" in display_columns else mentions_df
|
| 379 |
+
html_parts.append(mentions_df_sorted[display_columns].head(10).to_html(escape=True, index=False, classes="table table-sm"))
|
| 380 |
+
|
| 381 |
+
mentions_html_output = "\n".join(html_parts)
|
| 382 |
+
fig = None
|
| 383 |
+
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
|
| 384 |
+
try:
|
| 385 |
+
import matplotlib.pyplot as plt
|
| 386 |
+
import io, base64
|
| 387 |
+
plt.switch_backend('Agg') # Ensure non-interactive backend for server use
|
| 388 |
+
fig_plot, ax = plt.subplots(figsize=(6,4))
|
| 389 |
+
sentiment_counts = mentions_df["sentiment_label"].value_counts()
|
| 390 |
+
sentiment_counts.plot(kind='bar', ax=ax)
|
| 391 |
+
ax.set_title("Mention Sentiment Distribution")
|
| 392 |
+
ax.set_ylabel("Count")
|
| 393 |
+
plt.xticks(rotation=45, ha='right')
|
| 394 |
+
plt.tight_layout()
|
| 395 |
+
fig = fig_plot # Return the figure object for Gradio plot component
|
| 396 |
+
except Exception as e:
|
| 397 |
+
logging.error(f"Error generating mentions plot: {e}"); fig = None
|
| 398 |
+
return mentions_html_output, fig
|
| 399 |
+
|
| 400 |
|
| 401 |
# --- Gradio UI Blocks ---
|
| 402 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
|
| 403 |
+
title="LinkedIn Organization Post Viewer & Analytics") as app:
|
| 404 |
|
| 405 |
token_state = gr.State(value={
|
| 406 |
+
"token": None, "client_id": None, "org_urn": None,
|
| 407 |
+
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
|
| 408 |
+
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
|
| 409 |
+
"url_user_token_temp_storage": None
|
|
|
|
| 410 |
})
|
| 411 |
|
| 412 |
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
|
|
|
|
|
|
|
| 413 |
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
|
| 414 |
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
|
| 415 |
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
|
| 416 |
|
| 417 |
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
|
| 418 |
+
|
| 419 |
+
# Chain initial processing and dashboard display
|
| 420 |
+
def initial_load_sequence(url_token, org_urn_val, current_state):
|
| 421 |
+
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
|
| 422 |
+
dashboard_content = display_main_dashboard(new_state)
|
| 423 |
+
return status_msg, new_state, btn_update, dashboard_content
|
| 424 |
|
| 425 |
with gr.Tabs():
|
| 426 |
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
|
| 427 |
+
gr.Markdown("System checks for existing data. Button activates if new posts/mentions need fetching.")
|
| 428 |
+
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
|
| 429 |
+
dashboard_html_output = gr.HTML("<p style='text-align:center;'>Initializing...</p>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
+
# Trigger initial load when org_urn (from URL) is available
|
| 432 |
org_urn_display.change(
|
| 433 |
+
fn=initial_load_sequence,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 435 |
+
outputs=[status_box, token_state, sync_data_btn, dashboard_html_output]
|
| 436 |
)
|
| 437 |
+
# Also allow re-processing if user token changes (e.g. manual input if that was a feature)
|
| 438 |
+
# url_user_token_display.change(...)
|
| 439 |
|
| 440 |
+
sync_data_btn.click(
|
| 441 |
+
fn=guarded_fetch_posts_and_mentions,
|
| 442 |
inputs=[token_state],
|
| 443 |
+
outputs=[dashboard_html_output, token_state]
|
| 444 |
).then(
|
| 445 |
+
fn=process_and_store_bubble_token,
|
| 446 |
inputs=[url_user_token_display, org_urn_display, token_state],
|
| 447 |
+
outputs=[status_box, token_state, sync_data_btn]
|
| 448 |
+
).then(
|
| 449 |
+
fn=display_main_dashboard,
|
| 450 |
+
inputs=[token_state],
|
| 451 |
+
outputs=[dashboard_html_output]
|
| 452 |
)
|
| 453 |
|
| 454 |
with gr.TabItem("2οΈβ£ Analytics"):
|
|
|
|
| 455 |
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
|
| 456 |
+
follower_count = gr.Markdown("Waiting for token...")
|
| 457 |
+
with gr.Row(): follower_plot, growth_plot = gr.Plot(), gr.Plot()
|
| 458 |
+
with gr.Row(): eng_rate_plot = gr.Plot()
|
| 459 |
+
with gr.Row(): interaction_plot = gr.Plot()
|
| 460 |
+
with gr.Row(): eb_plot = gr.Plot()
|
| 461 |
+
with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
fetch_analytics_btn.click(
|
| 463 |
+
fn=guarded_fetch_analytics, inputs=[token_state],
|
|
|
|
| 464 |
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
|
| 465 |
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
|
| 466 |
)
|
| 467 |
|
| 468 |
with gr.TabItem("3οΈβ£ Mentions"):
|
| 469 |
+
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display", variant="secondary")
|
| 470 |
+
mentions_html = gr.HTML("Mentions data loads from Bubble after sync.")
|
| 471 |
+
mentions_plot = gr.Plot()
|
| 472 |
+
refresh_mentions_display_btn.click(
|
| 473 |
+
fn=run_mentions_tab_display, inputs=[token_state],
|
|
|
|
|
|
|
| 474 |
outputs=[mentions_html, mentions_plot]
|
| 475 |
)
|
| 476 |
|
| 477 |
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
| 478 |
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
|
| 479 |
|
|
|
|
| 480 |
if __name__ == "__main__":
|
| 481 |
if not os.environ.get("Linkedin_client_id"):
|
| 482 |
+
logging.warning("WARNING: 'Linkedin_client_id' env var not set.")
|
| 483 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|