LinkedinMonitor / ui_generators.py
GuglielmoTor's picture
Update ui_generators.py
c679528 verified
raw
history blame
25.8 kB
# ui_generators.py
"""
Generates HTML content and Matplotlib plots for the Gradio UI tabs,
and UI components for the Analytics tab.
"""
import pandas as pd
import logging
import matplotlib.pyplot as plt
import matplotlib # To ensure backend is switched before any plt import from other modules if app structure changes
import gradio as gr # Added for UI components
# Switch backend for Matplotlib to Agg for Gradio compatibility
matplotlib.use('Agg')
# Assuming config.py contains all necessary constants
from config import (
BUBBLE_POST_DATE_COLUMN_NAME, BUBBLE_MENTIONS_DATE_COLUMN_NAME, BUBBLE_MENTIONS_ID_COLUMN_NAME,
FOLLOWER_STATS_TYPE_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN,
FOLLOWER_STATS_PAID_COLUMN, FOLLOWER_STATS_CATEGORY_COLUMN_DT, UI_DATE_FORMAT, UI_MONTH_FORMAT
)
# Configure logging for this module if not already configured at app level
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(message)s')
# --- Constants for Button Icons/Text ---
# These are also defined/imported in app.py, ensure consistency
BOMB_ICON = "💣"
EXPLORE_ICON = "🧭"
FORMULA_ICON = "ƒ"
ACTIVE_ICON = "❌ Close" # Ensure this matches app.py
def display_main_dashboard(token_state):
"""Generates HTML for the main dashboard display using data from token_state."""
if not token_state or not token_state.get("token"):
logging.warning("Dashboard display: Access denied. No token available.")
return "❌ Access denied. No token available for dashboard."
html_parts = ["<div style='padding:10px;'><h3>Dashboard Overview</h3>"]
# Display Recent Posts
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>")
if not posts_df.empty:
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment', 'summary_text', 'li_eb_label'] if col in posts_df.columns]
if not cols_to_show_posts:
html_parts.append("<p>No relevant post columns found to display.</p>")
else:
display_df_posts = posts_df.copy()
if BUBBLE_POST_DATE_COLUMN_NAME in display_df_posts.columns:
try:
# Ensure the date column is datetime before formatting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce')
display_df_posts = display_df_posts.sort_values(by=BUBBLE_POST_DATE_COLUMN_NAME, ascending=False)
# Format for display after sorting
display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME] = display_df_posts[BUBBLE_POST_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting post dates for display: {e}")
html_parts.append("<p>Error formatting post dates.</p>")
html_parts.append(display_df_posts[cols_to_show_posts].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No posts loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Recent Mentions
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
html_parts.append(f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>")
if not mentions_df.empty:
cols_to_show_mentions = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label"] if col in mentions_df.columns]
if not cols_to_show_mentions:
html_parts.append("<p>No relevant mention columns found to display.</p>")
else:
display_df_mentions = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in display_df_mentions.columns:
try:
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
display_df_mentions = display_df_mentions.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = display_df_mentions[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
html_parts.append(display_df_mentions[cols_to_show_mentions].head().to_html(escape=False, index=False, classes="table table-striped table-sm"))
else:
html_parts.append("<p>No mentions loaded from Bubble.</p>")
html_parts.append("<hr/>")
# Display Follower Statistics Summary
follower_stats_df = token_state.get("bubble_follower_stats_df", pd.DataFrame())
html_parts.append(f"<h4>Follower Statistics ({len(follower_stats_df)} entries in Bubble):</h4>")
if not follower_stats_df.empty:
monthly_gains = follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly'].copy()
if not monthly_gains.empty and FOLLOWER_STATS_CATEGORY_COLUMN in monthly_gains.columns and \
FOLLOWER_STATS_ORGANIC_COLUMN in monthly_gains.columns and FOLLOWER_STATS_PAID_COLUMN in monthly_gains.columns:
try:
monthly_gains.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_display = monthly_gains.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
latest_gain = monthly_gains_display.head(1).copy()
if not latest_gain.empty:
latest_gain.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN] = latest_gain[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_DATE_FORMAT)
html_parts.append("<h5>Latest Monthly Follower Gain:</h5>")
html_parts.append(latest_gain[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].to_html(escape=True, index=False, classes="table table-sm"))
else:
html_parts.append("<p>No valid monthly follower gain data to display after processing.</p>")
except Exception as e:
logging.error(f"Error formatting follower gain dates for display: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
else:
html_parts.append("<p>No monthly follower gain data or required columns are missing.</p>")
demographics_count = len(follower_stats_df[follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] != 'follower_gains_monthly'])
html_parts.append(f"<p>Total demographic entries (seniority, industry, etc.): {demographics_count}</p>")
else:
html_parts.append("<p>No follower statistics loaded from Bubble.</p>")
html_parts.append("</div>")
return "".join(html_parts)
def run_mentions_tab_display(token_state):
"""Generates HTML and a plot for the Mentions tab."""
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Mentions tab: Access denied. No token.")
return "❌ Access denied. No token available for mentions.", None
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
logging.info("Mentions tab: No mentions data in Bubble.")
return "<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
display_columns = [col for col in [BUBBLE_MENTIONS_DATE_COLUMN_NAME, "mention_text", "sentiment_label", BUBBLE_MENTIONS_ID_COLUMN_NAME] if col in mentions_df.columns]
mentions_df_display = mentions_df.copy()
if BUBBLE_MENTIONS_DATE_COLUMN_NAME in mentions_df_display.columns:
try:
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce')
mentions_df_display = mentions_df_display.sort_values(by=BUBBLE_MENTIONS_DATE_COLUMN_NAME, ascending=False)
mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = mentions_df_display[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dt.strftime(UI_DATE_FORMAT)
except Exception as e:
logging.error(f"Error formatting mention dates for tab display: {e}")
html_parts.append("<p>Error formatting mention dates.</p>")
if not display_columns or mentions_df_display[display_columns].empty:
html_parts.append("<p>Required columns for mentions display are missing or no data after processing.</p>")
else:
html_parts.append(mentions_df_display[display_columns].head(20).to_html(escape=False, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None
fig_plot_local = None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
fig_plot_local, ax = plt.subplots(figsize=(6,4)) # Keep figsize for aspect ratio
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax, color=['#4CAF50', '#FFC107', '#F44336', '#9E9E9E', '#2196F3'])
ax.set_title("Mention Sentiment Distribution", y=1.03)
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
fig_plot_local.subplots_adjust(top=0.90)
fig = fig_plot_local
logging.info("Mentions tab: Sentiment distribution plot generated.")
except Exception as e:
logging.error(f"Error generating mentions plot: {e}", exc_info=True)
fig = None
finally:
# Ensure plt.close is called on the figure object, not plt itself if it's not the same
if fig_plot_local and fig_plot_local is not plt: # Check if fig_plot_local is a Figure object
plt.close(fig_plot_local)
return mentions_html_output, fig
def run_follower_stats_tab_display(token_state):
"""Generates HTML and plots for the Follower Stats tab."""
logging.info("Updating Follower Stats Tab display.")
if not token_state or not token_state.get("token"):
logging.warning("Follower stats tab: Access denied. No token.")
return "❌ Access denied. No token available for follower stats.", None, None, None
follower_stats_df_orig = token_state.get("bubble_follower_stats_df", pd.DataFrame())
if follower_stats_df_orig.empty:
logging.info("Follower stats tab: No follower stats data in Bubble.")
return "<p style='text-align:center;'>No follower stats data in Bubble. Try syncing.</p>", None, None, None
follower_stats_df = follower_stats_df_orig.copy()
html_parts = ["<div style='padding:10px;'><h3 style='text-align:center;'>Follower Statistics Overview</h3>"]
plot_monthly_gains = None
plot_seniority_dist = None
plot_industry_dist = None
# Monthly Gains Plot
fig_gains_local = None
try:
monthly_gains_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_gains_monthly') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_PAID_COLUMN].notna())
].copy()
if not monthly_gains_df.empty:
monthly_gains_df.loc[:, FOLLOWER_STATS_CATEGORY_COLUMN_DT] = pd.to_datetime(monthly_gains_df[FOLLOWER_STATS_CATEGORY_COLUMN], errors='coerce')
monthly_gains_df_sorted_table = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=False)
html_parts.append("<h4>Monthly Follower Gains (Last 13 Months):</h4>")
table_display_df = monthly_gains_df_sorted_table.copy()
table_display_df.loc[:,FOLLOWER_STATS_CATEGORY_COLUMN] = table_display_df[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
html_parts.append(table_display_df[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(13).to_html(escape=True, index=False, classes="table table-sm"))
monthly_gains_df_sorted_plot = monthly_gains_df.sort_values(by=FOLLOWER_STATS_CATEGORY_COLUMN_DT, ascending=True).copy()
monthly_gains_df_sorted_plot.loc[:, '_plot_month'] = monthly_gains_df_sorted_plot[FOLLOWER_STATS_CATEGORY_COLUMN_DT].dt.strftime(UI_MONTH_FORMAT)
plot_data = monthly_gains_df_sorted_plot.groupby('_plot_month').agg(
organic=(FOLLOWER_STATS_ORGANIC_COLUMN, 'sum'),
paid=(FOLLOWER_STATS_PAID_COLUMN, 'sum')
).reset_index()
plot_data['_plot_month_dt'] = pd.to_datetime(plot_data['_plot_month'], format=UI_MONTH_FORMAT) # Ensure correct month format
plot_data = plot_data.sort_values(by='_plot_month_dt')
fig_gains_local, ax_gains = plt.subplots(figsize=(10,5)) # Keep figsize for aspect ratio
ax_gains.plot(plot_data['_plot_month'], plot_data['organic'], marker='o', linestyle='-', label='Organic Gain')
ax_gains.plot(plot_data['_plot_month'], plot_data['paid'], marker='x', linestyle='--', label='Paid Gain')
ax_gains.set_title("Monthly Follower Gains Over Time", y=1.03)
ax_gains.set_ylabel("Follower Count")
ax_gains.set_xlabel("Month (YYYY-MM)")
plt.xticks(rotation=45, ha='right')
ax_gains.legend()
plt.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
fig_gains_local.subplots_adjust(top=0.90)
plot_monthly_gains = fig_gains_local
logging.info("Follower stats tab: Monthly gains plot generated.")
else:
html_parts.append("<p>No monthly follower gain data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting monthly gains: {e}", exc_info=True)
html_parts.append("<p>Error displaying monthly follower gain data.</p>")
plot_monthly_gains = None
finally:
if fig_gains_local and fig_gains_local is not plt:
plt.close(fig_gains_local)
html_parts.append("<hr/>")
# Seniority Plot
fig_seniority_local = None
try:
seniority_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_seniority') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not seniority_df.empty:
seniority_df_sorted = seniority_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Seniority (Top 10 Organic):</h4>")
html_parts.append(seniority_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_seniority_local, ax_seniority = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
top_n_seniority = seniority_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_seniority.bar(top_n_seniority[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_seniority[FOLLOWER_STATS_ORGANIC_COLUMN], color='skyblue')
ax_seniority.set_title("Follower Distribution by Seniority (Top 10 Organic)", y=1.03)
ax_seniority.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
fig_seniority_local.subplots_adjust(top=0.88)
plot_seniority_dist = fig_seniority_local
logging.info("Follower stats tab: Seniority distribution plot generated.")
else:
html_parts.append("<p>No follower seniority data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting seniority data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower seniority data.</p>")
plot_seniority_dist = None
finally:
if fig_seniority_local and fig_seniority_local is not plt:
plt.close(fig_seniority_local)
html_parts.append("<hr/>")
# Industry Plot
fig_industry_local = None
try:
industry_df = follower_stats_df[
(follower_stats_df[FOLLOWER_STATS_TYPE_COLUMN] == 'follower_industry') &
(follower_stats_df[FOLLOWER_STATS_CATEGORY_COLUMN].notna()) &
(follower_stats_df[FOLLOWER_STATS_ORGANIC_COLUMN].notna())
].copy()
if not industry_df.empty:
industry_df_sorted = industry_df.sort_values(by=FOLLOWER_STATS_ORGANIC_COLUMN, ascending=False)
html_parts.append("<h4>Followers by Industry (Top 10 Organic):</h4>")
html_parts.append(industry_df_sorted[[FOLLOWER_STATS_CATEGORY_COLUMN, FOLLOWER_STATS_ORGANIC_COLUMN, FOLLOWER_STATS_PAID_COLUMN]].head(10).to_html(escape=True, index=False, classes="table table-sm"))
fig_industry_local, ax_industry = plt.subplots(figsize=(8,5)) # Keep figsize for aspect ratio
top_n_industry = industry_df_sorted.nlargest(10, FOLLOWER_STATS_ORGANIC_COLUMN)
ax_industry.bar(top_n_industry[FOLLOWER_STATS_CATEGORY_COLUMN], top_n_industry[FOLLOWER_STATS_ORGANIC_COLUMN], color='lightcoral')
ax_industry.set_title("Follower Distribution by Industry (Top 10 Organic)", y=1.03)
ax_industry.set_ylabel("Organic Follower Count")
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
fig_industry_local.subplots_adjust(top=0.88)
plot_industry_dist = fig_industry_local
logging.info("Follower stats tab: Industry distribution plot generated.")
else:
html_parts.append("<p>No follower industry data available or required columns missing.</p>")
except Exception as e:
logging.error(f"Error processing or plotting industry data: {e}", exc_info=True)
html_parts.append("<p>Error displaying follower industry data.</p>")
plot_industry_dist = None
finally:
if fig_industry_local and fig_industry_local is not plt:
plt.close(fig_industry_local)
html_parts.append("</div>")
follower_html_output = "\n".join(html_parts)
return follower_html_output, plot_monthly_gains, plot_seniority_dist, plot_industry_dist
def create_analytics_plot_panel(plot_label_str, plot_id_str):
"""
Creates an individual plot panel with its plot component and action buttons.
Plot title and action buttons are on the same row.
Returns the panel (Column), plot component, and button components.
"""
# Icons are defined globally or imported. For this function, ensure they are accessible.
# If not using from config directly here, you might need to pass them or use fixed strings.
# Using fixed strings as a fallback if import fails, though they should be available via app.py's import.
local_bomb_icon, local_explore_icon, local_formula_icon = BOMB_ICON, EXPLORE_ICON, FORMULA_ICON
with gr.Column(visible=True) as panel_component: # Main container for this plot
with gr.Row(variant="compact"):
gr.Markdown(f"#### {plot_label_str}") # Plot title (scale might help balance)
with gr.Row(elem_classes="plot-actions", scale=1): # Action buttons container, give it some min_width
bomb_button = gr.Button(value=local_bomb_icon, variant="secondary", size="sm", min_width=30, elem_id=f"bomb_btn_{plot_id_str}")
formula_button = gr.Button(value=local_formula_icon, variant="secondary", size="sm", min_width=30, elem_id=f"formula_btn_{plot_id_str}")
explore_button = gr.Button(value=local_explore_icon, variant="secondary", size="sm", min_width=30, elem_id=f"explore_btn_{plot_id_str}")
# MODIFIED: Added height to gr.Plot for consistent sizing
plot_component = gr.Plot(label=plot_label_str, show_label=False) # Adjust height as needed
logging.debug(f"Created analytics panel for: {plot_label_str} (ID: {plot_id_str}) with fixed plot height.")
return panel_component, plot_component, bomb_button, explore_button, formula_button
def build_analytics_tab_plot_area(plot_configs):
"""
Builds the main plot area for the Analytics tab, arranging plot panels into rows of two,
with section titles appearing before their respective plots.
Returns a tuple:
- plot_ui_objects (dict): Dictionary of plot UI objects.
- section_titles_map (dict): Dictionary mapping section names to their gr.Markdown title components.
"""
logging.info(f"Building plot area for {len(plot_configs)} analytics plots with interleaved section titles.")
plot_ui_objects = {}
section_titles_map = {}
last_rendered_section = None
idx = 0
while idx < len(plot_configs):
current_plot_config = plot_configs[idx]
current_section_name = current_plot_config["section"]
# Render section title if it's new for this block of plots
if current_section_name != last_rendered_section:
if current_section_name not in section_titles_map:
# Create the Markdown component for the section title
section_md_component = gr.Markdown(f"## {current_section_name}", visible=True)
section_titles_map[current_section_name] = section_md_component
logging.debug(f"Rendered and stored Markdown for section: {current_section_name}")
# No 'else' needed here for visibility, as it's handled by click handlers if sections are hidden/shown.
# The component is created once and its visibility is controlled elsewhere.
last_rendered_section = current_section_name
with gr.Row(equal_height=True): # Row for one or two plots. equal_height=False allows plots to define their height.
# --- Process the first plot in the row (config1) ---
config1 = plot_configs[idx]
# Safety check for section consistency (should always pass if configs are ordered by section)
if config1["section"] != current_section_name:
logging.warning(f"Plot {config1['id']} section mismatch. Expected {current_section_name}, got {config1['section']}. This might affect layout if a new section title was expected.")
# If a new section starts unexpectedly, ensure its title is created if missing
if config1["section"] not in section_titles_map:
sec_md = gr.Markdown(f"### {config1['section']}", visible=True) # Create and make visible
section_titles_map[config1['section']] = sec_md
last_rendered_section = config1["section"] # Update the current section context
panel_col1, plot_comp1, bomb_btn1, explore_btn1, formula_btn1 = \
create_analytics_plot_panel(config1["label"], config1["id"])
plot_ui_objects[config1["id"]] = {
"plot_component": plot_comp1, "bomb_button": bomb_btn1,
"explore_button": explore_btn1, "formula_button": formula_btn1,
"label": config1["label"], "panel_component": panel_col1, # This is the gr.Column containing the plot and its actions
"section": config1["section"]
}
logging.debug(f"Created UI panel for plot_id: {config1['id']} in section {config1['section']}")
idx += 1
# --- Process the second plot in the row (config2), if applicable ---
if idx < len(plot_configs):
config2 = plot_configs[idx]
# Only add to the same row if it's part of the same section
if config2["section"] == current_section_name:
panel_col2, plot_comp2, bomb_btn2, explore_btn2, formula_btn2 = \
create_analytics_plot_panel(config2["label"], config2["id"])
plot_ui_objects[config2["id"]] = {
"plot_component": plot_comp2, "bomb_button": bomb_btn2,
"explore_button": explore_btn2, "formula_button": formula_btn2,
"label": config2["label"], "panel_component": panel_col2,
"section": config2["section"]
}
logging.debug(f"Created UI panel for plot_id: {config2['id']} in same row, section {config2['section']}")
idx += 1
# If the next plot is in a new section, it will be handled in the next iteration of the while loop,
# starting with a new section title and a new gr.Row.
logging.info(f"Finished building plot area. Total plot objects: {len(plot_ui_objects)}. Section titles created: {len(section_titles_map)}")
if len(plot_ui_objects) != len(plot_configs):
logging.error(f"MISMATCH: Expected {len(plot_configs)} plot objects, but created {len(plot_ui_objects)}.")
return plot_ui_objects, section_titles_map