LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
da4d579 verified
raw
history blame
27.6 kB
# -- coding: utf-8 --
import gradio as gr
import json
import os
import logging
import html
import pandas as pd
from datetime import datetime, timedelta # Used for pd.Timestamp and date checks
# Import functions from your custom modules
from analytics_fetch_and_rendering import fetch_and_render_analytics
from gradio_utils import get_url_user_token
from Bubble_API_Calls import (
fetch_linkedin_token_from_bubble,
bulk_upload_to_bubble,
fetch_linkedin_posts_data_from_bubble
)
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment, # For post comments
compile_detailed_posts,
prepare_data_for_bubble, # For posts, stats, comments
fetch_linkedin_mentions_core,
analyze_mentions_sentiment, # For individual mentions
compile_detailed_mentions, # Compiles to user-specified format
prepare_mentions_for_bubble # Prepares user-specified format for Bubble
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Global Constants ---
DEFAULT_INITIAL_FETCH_COUNT = 10
LINKEDIN_POST_URN_KEY = 'id'
BUBBLE_POST_URN_COLUMN_NAME = 'id'
BUBBLE_POST_DATE_COLUMN_NAME = 'published_at'
# Constants for Mentions - these should match the keys used in the data prepared for Bubble
BUBBLE_MENTIONS_TABLE_NAME = "LI_mentions" # Your Bubble table name for mentions
BUBBLE_MENTIONS_ID_COLUMN_NAME = "id" # Column in Bubble storing the mention's source post URN (share_urn)
BUBBLE_MENTIONS_DATE_COLUMN_NAME = "date" # Column in Bubble storing the mention's publication date
DEFAULT_MENTIONS_INITIAL_FETCH_COUNT = 20
DEFAULT_MENTIONS_UPDATE_FETCH_COUNT = 10
def check_token_status(token_state):
"""Checks the status of the LinkedIn token."""
return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
"""
Processes user token, fetches LinkedIn token, fetches existing Bubble posts & mentions,
and determines if an initial fetch or update is needed for LinkedIn posts.
Updates token state and UI for the sync button.
"""
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
new_state = token_state.copy() if token_state else {
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
"url_user_token_temp_storage": None
}
new_state.update({
"org_urn": org_urn,
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()),
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()),
"fetch_count_for_mentions_api": new_state.get("fetch_count_for_mentions_api", 0),
"url_user_token_temp_storage": url_user_token # Store for potential re-use
})
button_update = gr.update(visible=False, interactive=False, value="πŸ”„ Sync LinkedIn Data")
client_id = os.environ.get("Linkedin_client_id")
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
if not client_id: logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
try:
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
new_state["token"] = parsed_linkedin_token
logging.info("βœ… LinkedIn Token successfully fetched from Bubble.")
else:
new_state["token"] = None
logging.warning(f"❌ Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
except Exception as e:
new_state["token"] = None
logging.error(f"❌ Exception while fetching LinkedIn token from Bubble: {e}")
else:
new_state["token"] = None
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
current_org_urn = new_state.get("org_urn")
if current_org_urn:
# Fetch Posts from Bubble
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
try:
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, "LI_posts")
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
if error_message_posts: logging.warning(f"Error from fetch_linkedin_posts_data_from_bubble: {error_message_posts}.")
except Exception as e:
logging.error(f"❌ Error fetching posts from Bubble: {e}.")
new_state["bubble_posts_df"] = pd.DataFrame()
# Fetch Mentions from Bubble
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
try:
fetched_mentions_df, error_message_mentions = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
if error_message_mentions: logging.warning(f"Error from fetch_linkedin_posts_data_from_bubble: {error_message_mentions}.")
except Exception as e:
logging.error(f"❌ Error fetching mentions from Bubble: {e}.")
new_state["bubble_mentions_df"] = pd.DataFrame()
else:
logging.warning("Org URN not available in state. Cannot fetch posts or mentions from Bubble.")
new_state["bubble_posts_df"] = pd.DataFrame()
new_state["bubble_mentions_df"] = pd.DataFrame()
# Determine fetch count for Posts API
if new_state["bubble_posts_df"].empty:
logging.info(f"ℹ️ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
try:
df_posts_check = new_state["bubble_posts_df"].copy()
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing/all null. Initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_post_date_utc):
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
if days_diff >= 7:
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
else:
new_state['fetch_count_for_api'] = 0
except Exception as e:
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
# Determine if mentions need fetching (actual count decided in sync_linkedin_mentions)
mentions_need_sync = False
if new_state["bubble_mentions_df"].empty:
mentions_need_sync = True
else:
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
mentions_need_sync = True
else:
df_mentions_check = new_state["bubble_mentions_df"].copy()
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_mention_date_utc) or (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
mentions_need_sync = True
if new_state['fetch_count_for_api'] > 0 or (new_state["token"] and mentions_need_sync):
button_label = "πŸ”„ Sync LinkedIn Data"
if new_state['fetch_count_for_api'] > 0 and mentions_need_sync:
button_label += " (Posts & Mentions)"
elif new_state['fetch_count_for_api'] > 0:
button_label += f" ({new_state['fetch_count_for_api']} Posts)"
elif mentions_need_sync:
button_label += " (Mentions)"
button_update = gr.update(value=button_label, visible=True, interactive=True)
else:
button_update = gr.update(visible=False, interactive=False)
token_status_message = check_token_status(new_state)
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Post Fetch: {new_state['fetch_count_for_api']}. Mentions sync needed: {mentions_need_sync}")
return token_status_message, new_state, button_update
def sync_linkedin_mentions(token_state):
"""Fetches and syncs LinkedIn mentions to Bubble based on defined logic."""
logging.info("Starting LinkedIn mentions sync process.")
if not token_state or not token_state.get("token"):
logging.error("Mentions sync: Access denied. No LinkedIn token.")
return "Mentions: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).")
return "Mentions: Config error. ", token_state
fetch_count_for_mentions_api = 0
if bubble_mentions_df.empty:
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
logging.info(f"No mentions in Bubble. Fetching initial {fetch_count_for_mentions_api} mentions.")
else:
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in bubble_mentions_df.columns or bubble_mentions_df[BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
logging.warning(f"Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' for mentions missing or all null. Fetching initial.")
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
else:
mentions_df_copy = bubble_mentions_df.copy()
mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_mention_date_utc):
logging.warning("No valid dates in mentions data. Fetching initial.")
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
else:
days_since_last_mention = (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days
logging.info(f"Days since last mention: {days_since_last_mention}")
if days_since_last_mention >= 7:
fetch_count_for_mentions_api = DEFAULT_MENTIONS_UPDATE_FETCH_COUNT
logging.info(f"Last mention older than 7 days. Fetching update of {fetch_count_for_mentions_api} mentions.")
else:
logging.info("Mentions data is fresh. No API fetch needed.")
token_state["fetch_count_for_mentions_api"] = fetch_count_for_mentions_api
if fetch_count_for_mentions_api == 0:
return "Mentions: Up-to-date. ", token_state
try:
logging.info(f"Fetching {fetch_count_for_mentions_api} core mentions from LinkedIn for org_urn: {org_urn}")
processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api)
if not processed_raw_mentions:
logging.info("No mentions retrieved from LinkedIn API.")
return "Mentions: None found via API. ", token_state
existing_mention_ids = set()
if not bubble_mentions_df.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df.columns:
existing_mention_ids = set(bubble_mentions_df[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str))
sentiments_map = analyze_mentions_sentiment(processed_raw_mentions)
all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map)
new_compiled_mentions_to_upload = [
m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids
]
if not new_compiled_mentions_to_upload:
logging.info("All fetched LinkedIn mentions are already present in Bubble.")
return "Mentions: All fetched already in Bubble. ", token_state
logging.info(f"Identified {len(new_compiled_mentions_to_upload)} new mentions to process after filtering.")
bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload)
if bubble_ready_mentions:
logging.info(f"Uploading {len(bubble_ready_mentions)} new mentions to Bubble table: {BUBBLE_MENTIONS_TABLE_NAME}.")
bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME)
return f"Mentions: Synced {len(bubble_ready_mentions)} new. ", token_state
else:
logging.info("No new mentions to upload to Bubble after final preparation.")
return "Mentions: No new ones to upload. ", token_state
except ValueError as ve:
logging.error(f"ValueError during mentions sync: {ve}")
return f"Mentions Error: {html.escape(str(ve))}. ", token_state
except Exception as e:
logging.exception("Unexpected error in sync_linkedin_mentions.")
return "Mentions: Unexpected error. ", token_state
def guarded_fetch_posts_and_mentions(token_state):
logging.info("Starting guarded_fetch_posts_and_mentions process.")
if not token_state or not token_state.get("token"):
logging.error("Access denied. No LinkedIn token available.")
return "<p style='color:red; text-align:center;'>❌ Access denied. LinkedIn token not available.</p>", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0)
bubble_posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
posts_sync_message = ""
if not org_urn: return "<p style='color:red;'>❌ Config error: Org URN missing.</p>", token_state
if not client_id or client_id == "ENV VAR MISSING": return "<p style='color:red;'>❌ Config error: Client ID missing.</p>", token_state
if fetch_count_for_posts_api == 0:
posts_sync_message = "Posts: Already up-to-date. "
else:
try:
logging.info(f"Fetching {fetch_count_for_posts_api} core posts for org_urn: {org_urn}.")
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api)
if not processed_raw_posts: posts_sync_message = "Posts: None found via API. "
else:
existing_post_urns = set()
if not bubble_posts_df.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df.columns:
existing_post_urns = set(bubble_posts_df[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns]
if not new_raw_posts: posts_sync_message = "Posts: All fetched already in Bubble. "
else:
post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)]
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
sentiments_per_post = analyze_sentiment(all_comments_data)
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post)
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
if li_posts:
bulk_upload_to_bubble(li_posts, "LI_posts")
if li_post_stats: bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
if li_post_comments: bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
posts_sync_message = f"Posts: Synced {len(li_posts)} new. "
else: posts_sync_message = "Posts: No new ones to upload. "
except ValueError as ve: posts_sync_message = f"Posts Error: {html.escape(str(ve))}. "
except Exception: logging.exception("Posts processing error."); posts_sync_message = "Posts: Unexpected error. "
mentions_sync_message, updated_token_state = sync_linkedin_mentions(token_state)
token_state = updated_token_state # Ensure state is updated after mentions sync
# Re-fetch data from Bubble to update DataFrames in state for immediate display refresh
if org_urn:
try:
fetched_posts_df, _ = fetch_linkedin_posts_data_from_bubble(org_urn, "LI_posts")
token_state["bubble_posts_df"] = pd.DataFrame() if fetched_posts_df is None else fetched_posts_df
fetched_mentions_df, _ = fetch_linkedin_posts_data_from_bubble(org_urn, BUBBLE_MENTIONS_TABLE_NAME)
token_state["bubble_mentions_df"] = pd.DataFrame() if fetched_mentions_df is None else fetched_mentions_df
logging.info("Refreshed posts and mentions DataFrames in state from Bubble after sync.")
except Exception as e:
logging.error(f"Error re-fetching data from Bubble post-sync: {e}")
final_message = f"<p style='color:green; text-align:center;'>βœ… Sync Attempted. {posts_sync_message} {mentions_sync_message}</p>"
return final_message, token_state
def display_main_dashboard(token_state):
if not token_state or not token_state.get("token"):
return "❌ Access denied. No token available for dashboard."
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
posts_html = f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>"
if not posts_df.empty:
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment'] if col in posts_df.columns] # Example columns
posts_html += posts_df[cols_to_show_posts].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_posts else "<p>No post data to display or columns missing.</p>"
else: posts_html += "<p>No posts loaded from Bubble.</p>"
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
mentions_html = f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>"
if not mentions_df.empty:
# Using the exact column names as defined for Bubble upload: date, id, mention_text, organization_urn, sentiment_label
cols_to_show_mentions = [col for col in ["date", "mention_text", "sentiment_label"] if col in mentions_df.columns]
mentions_html += mentions_df[cols_to_show_mentions].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_mentions else "<p>No mention data to display or columns missing.</p>"
else: mentions_html += "<p>No mentions loaded from Bubble.</p>"
return f"<div style='padding:10px;'><h3>Dashboard Overview</h3>{posts_html}<hr/>{mentions_html}</div>"
def guarded_fetch_analytics(token_state):
if not token_state or not token_state.get("token"):
return ("❌ Access denied. No token.", None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"), token_state.get("org_urn"))
def run_mentions_tab_display(token_state):
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
return ("❌ Access denied. No token available for mentions.", None)
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
return ("<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None)
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
# Columns expected from Bubble: date, id, mention_text, organization_urn, sentiment_label
display_columns = [col for col in ["date", "mention_text", "sentiment_label", "id"] if col in mentions_df.columns]
if not display_columns:
html_parts.append("<p>Required columns for mentions display are missing from Bubble data.</p>")
else:
mentions_df_sorted = mentions_df.sort_values(by="date", ascending=False, errors='coerce') if "date" in display_columns else mentions_df
html_parts.append(mentions_df_sorted[display_columns].head(10).to_html(escape=True, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
import matplotlib.pyplot as plt
import io, base64
plt.switch_backend('Agg') # Ensure non-interactive backend for server use
fig_plot, ax = plt.subplots(figsize=(6,4))
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title("Mention Sentiment Distribution")
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
fig = fig_plot # Return the figure object for Gradio plot component
except Exception as e:
logging.error(f"Error generating mentions plot: {e}"); fig = None
return mentions_html_output, fig
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Post Viewer & Analytics") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
"url_user_token_temp_storage": None
})
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
# Chain initial processing and dashboard display
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard & Sync"):
gr.Markdown("System checks for existing data. Button activates if new posts/mentions need fetching.")
sync_data_btn = gr.Button("πŸ”„ Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
dashboard_html_output = gr.HTML("<p style='text-align:center;'>Initializing...</p>")
# Trigger initial load when org_urn (from URL) is available
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_html_output]
)
# Also allow re-processing if user token changes (e.g. manual input if that was a feature)
# url_user_token_display.change(...)
sync_data_btn.click(
fn=guarded_fetch_posts_and_mentions,
inputs=[token_state],
outputs=[dashboard_html_output, token_state]
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn]
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_html_output]
)
with gr.TabItem("2️⃣ Analytics"):
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("Waiting for token...")
with gr.Row(): follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row(): eng_rate_plot = gr.Plot()
with gr.Row(): interaction_plot = gr.Plot()
with gr.Row(): eb_plot = gr.Plot()
with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics, inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3️⃣ Mentions"):
refresh_mentions_display_btn = gr.Button("πŸ”„ Refresh Mentions Display", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync.")
mentions_plot = gr.Plot()
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
logging.warning("WARNING: 'Linkedin_client_id' env var not set.")
app.launch(server_name="0.0.0.0", server_port=7860)