Spaces:
Running
Running
File size: 27,551 Bytes
f9d8231 b560569 896ae69 b0464a9 87a87e7 1ba4c1b 4ad44b9 f7fc39b 2a3b22e adb3bbe 179ea1f 4ad44b9 2a3b22e da4d579 2a3b22e 4ad44b9 9d99925 4ad44b9 9d99925 4ad44b9 9d99925 b0464a9 2a3b22e 87b2809 4ad44b9 87b2809 4ad44b9 87b2809 b0464a9 2a3b22e b0464a9 2a3b22e 4ad44b9 67742c4 2a3b22e f9d8231 67742c4 4ad44b9 67742c4 4ad44b9 2a3b22e 4ad44b9 b0464a9 4ad44b9 2a3b22e f9d8231 67742c4 f9d8231 67742c4 f9d8231 67742c4 f9d8231 2a3b22e 67742c4 2a3b22e 4ad44b9 2a3b22e 4ad44b9 da4d579 4ad44b9 da4d579 2a3b22e 4ad44b9 2a3b22e 4ad44b9 87b2809 4ad44b9 87b2809 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 3038c7b 4ad44b9 67742c4 4ad44b9 9f71fb3 67742c4 2a3b22e 4ad44b9 67742c4 4ad44b9 9d99925 4ad44b9 87b2809 4ad44b9 87b2809 4ad44b9 87b2809 4ad44b9 87b2809 4ad44b9 9d99925 4ad44b9 9f71fb3 4ad44b9 9f71fb3 2a3b22e 4ad44b9 9d99925 4ad44b9 9f71fb3 4ad44b9 b0464a9 4ad44b9 67742c4 4ad44b9 da4d579 4ad44b9 b0464a9 4cc3230 b0464a9 4ad44b9 b0464a9 4ad44b9 b0464a9 2a3b22e 4ad44b9 b0464a9 2a3b22e adb3bbe 4ad44b9 179ea1f 67742c4 4ad44b9 67742c4 adb3bbe 3038c7b b0464a9 67742c4 f9d8231 179ea1f 2a3b22e 4ad44b9 adb3bbe 2a3b22e 4ad44b9 2a3b22e 4ad44b9 2a3b22e 4ad44b9 2a3b22e 4ad44b9 2a3b22e 4ad44b9 2a3b22e 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 67742c4 4ad44b9 faf26ff 67742c4 adb3bbe 4ad44b9 adb3bbe 4ad44b9 b0464a9 adb3bbe 06d22e5 538b42b 4ad44b9 b8b7e00 538b42b 2a3b22e adb3bbe 179ea1f 4ad44b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# -- coding: utf-8 --
import gradio as gr
import json
import os
import logging
import html
import pandas as pd
from datetime import datetime, timedelta # Used for pd.Timestamp and date checks
# Import functions from your custom modules
from analytics_fetch_and_rendering import fetch_and_render_analytics
from gradio_utils import get_url_user_token
from Bubble_API_Calls import (
fetch_linkedin_token_from_bubble,
bulk_upload_to_bubble,
fetch_linkedin_posts_data_from_bubble
)
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment, # For post comments
compile_detailed_posts,
prepare_data_for_bubble, # For posts, stats, comments
fetch_linkedin_mentions_core,
analyze_mentions_sentiment, # For individual mentions
compile_detailed_mentions, # Compiles to user-specified format
prepare_mentions_for_bubble # Prepares user-specified format for Bubble
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Global Constants ---
DEFAULT_INITIAL_FETCH_COUNT = 10
LINKEDIN_POST_URN_KEY = 'id'
BUBBLE_POST_URN_COLUMN_NAME = 'id'
BUBBLE_POST_DATE_COLUMN_NAME = 'published_at'
# Constants for Mentions - these should match the keys used in the data prepared for Bubble
BUBBLE_MENTIONS_TABLE_NAME = "LI_mentions" # Your Bubble table name for mentions
BUBBLE_MENTIONS_ID_COLUMN_NAME = "id" # Column in Bubble storing the mention's source post URN (share_urn)
BUBBLE_MENTIONS_DATE_COLUMN_NAME = "date" # Column in Bubble storing the mention's publication date
DEFAULT_MENTIONS_INITIAL_FETCH_COUNT = 20
DEFAULT_MENTIONS_UPDATE_FETCH_COUNT = 10
def check_token_status(token_state):
"""Checks the status of the LinkedIn token."""
return "β
Token available" if token_state and token_state.get("token") else "β Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
"""
Processes user token, fetches LinkedIn token, fetches existing Bubble posts & mentions,
and determines if an initial fetch or update is needed for LinkedIn posts.
Updates token state and UI for the sync button.
"""
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
new_state = token_state.copy() if token_state else {
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
"url_user_token_temp_storage": None
}
new_state.update({
"org_urn": org_urn,
"bubble_posts_df": new_state.get("bubble_posts_df", pd.DataFrame()),
"fetch_count_for_api": new_state.get("fetch_count_for_api", 0),
"bubble_mentions_df": new_state.get("bubble_mentions_df", pd.DataFrame()),
"fetch_count_for_mentions_api": new_state.get("fetch_count_for_mentions_api", 0),
"url_user_token_temp_storage": url_user_token # Store for potential re-use
})
button_update = gr.update(visible=False, interactive=False, value="π Sync LinkedIn Data")
client_id = os.environ.get("Linkedin_client_id")
new_state["client_id"] = client_id if client_id else "ENV VAR MISSING"
if not client_id: logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
try:
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
new_state["token"] = parsed_linkedin_token
logging.info("β
LinkedIn Token successfully fetched from Bubble.")
else:
new_state["token"] = None
logging.warning(f"β Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
except Exception as e:
new_state["token"] = None
logging.error(f"β Exception while fetching LinkedIn token from Bubble: {e}")
else:
new_state["token"] = None
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
current_org_urn = new_state.get("org_urn")
if current_org_urn:
# Fetch Posts from Bubble
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
try:
fetched_posts_df, error_message_posts = fetch_linkedin_posts_data_from_bubble(current_org_urn, "LI_posts")
new_state["bubble_posts_df"] = pd.DataFrame() if error_message_posts or fetched_posts_df is None else fetched_posts_df
if error_message_posts: logging.warning(f"Error from fetch_linkedin_posts_data_from_bubble: {error_message_posts}.")
except Exception as e:
logging.error(f"β Error fetching posts from Bubble: {e}.")
new_state["bubble_posts_df"] = pd.DataFrame()
# Fetch Mentions from Bubble
logging.info(f"Attempting to fetch mentions from Bubble for org_urn: {current_org_urn}")
try:
fetched_mentions_df, error_message_mentions = fetch_linkedin_posts_data_from_bubble(current_org_urn, BUBBLE_MENTIONS_TABLE_NAME)
new_state["bubble_mentions_df"] = pd.DataFrame() if error_message_mentions or fetched_mentions_df is None else fetched_mentions_df
if error_message_mentions: logging.warning(f"Error from fetch_linkedin_posts_data_from_bubble: {error_message_mentions}.")
except Exception as e:
logging.error(f"β Error fetching mentions from Bubble: {e}.")
new_state["bubble_mentions_df"] = pd.DataFrame()
else:
logging.warning("Org URN not available in state. Cannot fetch posts or mentions from Bubble.")
new_state["bubble_posts_df"] = pd.DataFrame()
new_state["bubble_mentions_df"] = pd.DataFrame()
# Determine fetch count for Posts API
if new_state["bubble_posts_df"].empty:
logging.info(f"βΉοΈ No posts in Bubble. Setting to fetch initial {DEFAULT_INITIAL_FETCH_COUNT} posts.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
try:
df_posts_check = new_state["bubble_posts_df"].copy()
if BUBBLE_POST_DATE_COLUMN_NAME not in df_posts_check.columns or df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].isnull().all():
logging.warning(f"Date column '{BUBBLE_POST_DATE_COLUMN_NAME}' for posts missing/all null. Initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME] = pd.to_datetime(df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_post_date_utc = df_posts_check[BUBBLE_POST_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_post_date_utc):
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
else:
days_diff = (pd.Timestamp('now', tz='UTC').normalize() - last_post_date_utc.normalize()).days
if days_diff >= 7:
new_state['fetch_count_for_api'] = max(1, days_diff // 7) * 10
else:
new_state['fetch_count_for_api'] = 0
except Exception as e:
logging.error(f"Error processing post dates: {e}. Defaulting to initial fetch.")
new_state['fetch_count_for_api'] = DEFAULT_INITIAL_FETCH_COUNT
# Determine if mentions need fetching (actual count decided in sync_linkedin_mentions)
mentions_need_sync = False
if new_state["bubble_mentions_df"].empty:
mentions_need_sync = True
else:
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in new_state["bubble_mentions_df"].columns or new_state["bubble_mentions_df"][BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
mentions_need_sync = True
else:
df_mentions_check = new_state["bubble_mentions_df"].copy()
df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = df_mentions_check[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_mention_date_utc) or (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days >= 7:
mentions_need_sync = True
if new_state['fetch_count_for_api'] > 0 or (new_state["token"] and mentions_need_sync):
button_label = "π Sync LinkedIn Data"
if new_state['fetch_count_for_api'] > 0 and mentions_need_sync:
button_label += " (Posts & Mentions)"
elif new_state['fetch_count_for_api'] > 0:
button_label += f" ({new_state['fetch_count_for_api']} Posts)"
elif mentions_need_sync:
button_label += " (Mentions)"
button_update = gr.update(value=button_label, visible=True, interactive=True)
else:
button_update = gr.update(visible=False, interactive=False)
token_status_message = check_token_status(new_state)
logging.info(f"Token processing complete. Status: {token_status_message}. Button: {button_update}. Post Fetch: {new_state['fetch_count_for_api']}. Mentions sync needed: {mentions_need_sync}")
return token_status_message, new_state, button_update
def sync_linkedin_mentions(token_state):
"""Fetches and syncs LinkedIn mentions to Bubble based on defined logic."""
logging.info("Starting LinkedIn mentions sync process.")
if not token_state or not token_state.get("token"):
logging.error("Mentions sync: Access denied. No LinkedIn token.")
return "Mentions: No token. ", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
bubble_mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if not org_urn or not client_id or client_id == "ENV VAR MISSING":
logging.error("Mentions sync: Configuration error (Org URN or Client ID missing).")
return "Mentions: Config error. ", token_state
fetch_count_for_mentions_api = 0
if bubble_mentions_df.empty:
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
logging.info(f"No mentions in Bubble. Fetching initial {fetch_count_for_mentions_api} mentions.")
else:
if BUBBLE_MENTIONS_DATE_COLUMN_NAME not in bubble_mentions_df.columns or bubble_mentions_df[BUBBLE_MENTIONS_DATE_COLUMN_NAME].isnull().all():
logging.warning(f"Date column '{BUBBLE_MENTIONS_DATE_COLUMN_NAME}' for mentions missing or all null. Fetching initial.")
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
else:
mentions_df_copy = bubble_mentions_df.copy()
mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME] = pd.to_datetime(mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME], errors='coerce', utc=True)
last_mention_date_utc = mentions_df_copy[BUBBLE_MENTIONS_DATE_COLUMN_NAME].dropna().max()
if pd.isna(last_mention_date_utc):
logging.warning("No valid dates in mentions data. Fetching initial.")
fetch_count_for_mentions_api = DEFAULT_MENTIONS_INITIAL_FETCH_COUNT
else:
days_since_last_mention = (pd.Timestamp('now', tz='UTC').normalize() - last_mention_date_utc.normalize()).days
logging.info(f"Days since last mention: {days_since_last_mention}")
if days_since_last_mention >= 7:
fetch_count_for_mentions_api = DEFAULT_MENTIONS_UPDATE_FETCH_COUNT
logging.info(f"Last mention older than 7 days. Fetching update of {fetch_count_for_mentions_api} mentions.")
else:
logging.info("Mentions data is fresh. No API fetch needed.")
token_state["fetch_count_for_mentions_api"] = fetch_count_for_mentions_api
if fetch_count_for_mentions_api == 0:
return "Mentions: Up-to-date. ", token_state
try:
logging.info(f"Fetching {fetch_count_for_mentions_api} core mentions from LinkedIn for org_urn: {org_urn}")
processed_raw_mentions = fetch_linkedin_mentions_core(client_id, token_dict, org_urn, count=fetch_count_for_mentions_api)
if not processed_raw_mentions:
logging.info("No mentions retrieved from LinkedIn API.")
return "Mentions: None found via API. ", token_state
existing_mention_ids = set()
if not bubble_mentions_df.empty and BUBBLE_MENTIONS_ID_COLUMN_NAME in bubble_mentions_df.columns:
existing_mention_ids = set(bubble_mentions_df[BUBBLE_MENTIONS_ID_COLUMN_NAME].dropna().astype(str))
sentiments_map = analyze_mentions_sentiment(processed_raw_mentions)
all_compiled_mentions = compile_detailed_mentions(processed_raw_mentions, sentiments_map)
new_compiled_mentions_to_upload = [
m for m in all_compiled_mentions if str(m.get("id")) not in existing_mention_ids
]
if not new_compiled_mentions_to_upload:
logging.info("All fetched LinkedIn mentions are already present in Bubble.")
return "Mentions: All fetched already in Bubble. ", token_state
logging.info(f"Identified {len(new_compiled_mentions_to_upload)} new mentions to process after filtering.")
bubble_ready_mentions = prepare_mentions_for_bubble(new_compiled_mentions_to_upload)
if bubble_ready_mentions:
logging.info(f"Uploading {len(bubble_ready_mentions)} new mentions to Bubble table: {BUBBLE_MENTIONS_TABLE_NAME}.")
bulk_upload_to_bubble(bubble_ready_mentions, BUBBLE_MENTIONS_TABLE_NAME)
return f"Mentions: Synced {len(bubble_ready_mentions)} new. ", token_state
else:
logging.info("No new mentions to upload to Bubble after final preparation.")
return "Mentions: No new ones to upload. ", token_state
except ValueError as ve:
logging.error(f"ValueError during mentions sync: {ve}")
return f"Mentions Error: {html.escape(str(ve))}. ", token_state
except Exception as e:
logging.exception("Unexpected error in sync_linkedin_mentions.")
return "Mentions: Unexpected error. ", token_state
def guarded_fetch_posts_and_mentions(token_state):
logging.info("Starting guarded_fetch_posts_and_mentions process.")
if not token_state or not token_state.get("token"):
logging.error("Access denied. No LinkedIn token available.")
return "<p style='color:red; text-align:center;'>β Access denied. LinkedIn token not available.</p>", token_state
client_id = token_state.get("client_id")
token_dict = token_state.get("token")
org_urn = token_state.get('org_urn')
fetch_count_for_posts_api = token_state.get('fetch_count_for_api', 0)
bubble_posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
posts_sync_message = ""
if not org_urn: return "<p style='color:red;'>β Config error: Org URN missing.</p>", token_state
if not client_id or client_id == "ENV VAR MISSING": return "<p style='color:red;'>β Config error: Client ID missing.</p>", token_state
if fetch_count_for_posts_api == 0:
posts_sync_message = "Posts: Already up-to-date. "
else:
try:
logging.info(f"Fetching {fetch_count_for_posts_api} core posts for org_urn: {org_urn}.")
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn, count=fetch_count_for_posts_api)
if not processed_raw_posts: posts_sync_message = "Posts: None found via API. "
else:
existing_post_urns = set()
if not bubble_posts_df.empty and BUBBLE_POST_URN_COLUMN_NAME in bubble_posts_df.columns:
existing_post_urns = set(bubble_posts_df[BUBBLE_POST_URN_COLUMN_NAME].dropna().astype(str))
new_raw_posts = [p for p in processed_raw_posts if str(p.get(LINKEDIN_POST_URN_KEY)) not in existing_post_urns]
if not new_raw_posts: posts_sync_message = "Posts: All fetched already in Bubble. "
else:
post_urns_to_process = [p[LINKEDIN_POST_URN_KEY] for p in new_raw_posts if p.get(LINKEDIN_POST_URN_KEY)]
all_comments_data = fetch_comments(client_id, token_dict, post_urns_to_process, stats_map)
sentiments_per_post = analyze_sentiment(all_comments_data)
detailed_new_posts = compile_detailed_posts(new_raw_posts, stats_map, sentiments_per_post)
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_new_posts, all_comments_data)
if li_posts:
bulk_upload_to_bubble(li_posts, "LI_posts")
if li_post_stats: bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
if li_post_comments: bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
posts_sync_message = f"Posts: Synced {len(li_posts)} new. "
else: posts_sync_message = "Posts: No new ones to upload. "
except ValueError as ve: posts_sync_message = f"Posts Error: {html.escape(str(ve))}. "
except Exception: logging.exception("Posts processing error."); posts_sync_message = "Posts: Unexpected error. "
mentions_sync_message, updated_token_state = sync_linkedin_mentions(token_state)
token_state = updated_token_state # Ensure state is updated after mentions sync
# Re-fetch data from Bubble to update DataFrames in state for immediate display refresh
if org_urn:
try:
fetched_posts_df, _ = fetch_linkedin_posts_data_from_bubble(org_urn, "LI_posts")
token_state["bubble_posts_df"] = pd.DataFrame() if fetched_posts_df is None else fetched_posts_df
fetched_mentions_df, _ = fetch_linkedin_posts_data_from_bubble(org_urn, BUBBLE_MENTIONS_TABLE_NAME)
token_state["bubble_mentions_df"] = pd.DataFrame() if fetched_mentions_df is None else fetched_mentions_df
logging.info("Refreshed posts and mentions DataFrames in state from Bubble after sync.")
except Exception as e:
logging.error(f"Error re-fetching data from Bubble post-sync: {e}")
final_message = f"<p style='color:green; text-align:center;'>β
Sync Attempted. {posts_sync_message} {mentions_sync_message}</p>"
return final_message, token_state
def display_main_dashboard(token_state):
if not token_state or not token_state.get("token"):
return "β Access denied. No token available for dashboard."
posts_df = token_state.get("bubble_posts_df", pd.DataFrame())
posts_html = f"<h4>Recent Posts ({len(posts_df)} in Bubble):</h4>"
if not posts_df.empty:
cols_to_show_posts = [col for col in [BUBBLE_POST_DATE_COLUMN_NAME, 'text', 'sentiment'] if col in posts_df.columns] # Example columns
posts_html += posts_df[cols_to_show_posts].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_posts else "<p>No post data to display or columns missing.</p>"
else: posts_html += "<p>No posts loaded from Bubble.</p>"
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
mentions_html = f"<h4>Recent Mentions ({len(mentions_df)} in Bubble):</h4>"
if not mentions_df.empty:
# Using the exact column names as defined for Bubble upload: date, id, mention_text, organization_urn, sentiment_label
cols_to_show_mentions = [col for col in ["date", "mention_text", "sentiment_label"] if col in mentions_df.columns]
mentions_html += mentions_df[cols_to_show_mentions].head().to_html(escape=True, index=False, classes="table table-striped table-sm") if cols_to_show_mentions else "<p>No mention data to display or columns missing.</p>"
else: mentions_html += "<p>No mentions loaded from Bubble.</p>"
return f"<div style='padding:10px;'><h3>Dashboard Overview</h3>{posts_html}<hr/>{mentions_html}</div>"
def guarded_fetch_analytics(token_state):
if not token_state or not token_state.get("token"):
return ("β Access denied. No token.", None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"), token_state.get("org_urn"))
def run_mentions_tab_display(token_state):
logging.info("Updating Mentions Tab display.")
if not token_state or not token_state.get("token"):
return ("β Access denied. No token available for mentions.", None)
mentions_df = token_state.get("bubble_mentions_df", pd.DataFrame())
if mentions_df.empty:
return ("<p style='text-align:center;'>No mentions data in Bubble. Try syncing.</p>", None)
html_parts = ["<h3 style='text-align:center;'>Recent Mentions</h3>"]
# Columns expected from Bubble: date, id, mention_text, organization_urn, sentiment_label
display_columns = [col for col in ["date", "mention_text", "sentiment_label", "id"] if col in mentions_df.columns]
if not display_columns:
html_parts.append("<p>Required columns for mentions display are missing from Bubble data.</p>")
else:
mentions_df_sorted = mentions_df.sort_values(by="date", ascending=False, errors='coerce') if "date" in display_columns else mentions_df
html_parts.append(mentions_df_sorted[display_columns].head(10).to_html(escape=True, index=False, classes="table table-sm"))
mentions_html_output = "\n".join(html_parts)
fig = None
if not mentions_df.empty and "sentiment_label" in mentions_df.columns:
try:
import matplotlib.pyplot as plt
import io, base64
plt.switch_backend('Agg') # Ensure non-interactive backend for server use
fig_plot, ax = plt.subplots(figsize=(6,4))
sentiment_counts = mentions_df["sentiment_label"].value_counts()
sentiment_counts.plot(kind='bar', ax=ax)
ax.set_title("Mention Sentiment Distribution")
ax.set_ylabel("Count")
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
fig = fig_plot # Return the figure object for Gradio plot component
except Exception as e:
logging.error(f"Error generating mentions plot: {e}"); fig = None
return mentions_html_output, fig
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Organization Post Viewer & Analytics") as app:
token_state = gr.State(value={
"token": None, "client_id": None, "org_urn": None,
"bubble_posts_df": pd.DataFrame(), "fetch_count_for_api": 0,
"bubble_mentions_df": pd.DataFrame(), "fetch_count_for_mentions_api": 0,
"url_user_token_temp_storage": None
})
gr.Markdown("# π LinkedIn Organization Post Viewer & Analytics")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
# Chain initial processing and dashboard display
def initial_load_sequence(url_token, org_urn_val, current_state):
status_msg, new_state, btn_update = process_and_store_bubble_token(url_token, org_urn_val, current_state)
dashboard_content = display_main_dashboard(new_state)
return status_msg, new_state, btn_update, dashboard_content
with gr.Tabs():
with gr.TabItem("1οΈβ£ Dashboard & Sync"):
gr.Markdown("System checks for existing data. Button activates if new posts/mentions need fetching.")
sync_data_btn = gr.Button("π Sync LinkedIn Data", variant="primary", visible=False, interactive=False)
dashboard_html_output = gr.HTML("<p style='text-align:center;'>Initializing...</p>")
# Trigger initial load when org_urn (from URL) is available
org_urn_display.change(
fn=initial_load_sequence,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn, dashboard_html_output]
)
# Also allow re-processing if user token changes (e.g. manual input if that was a feature)
# url_user_token_display.change(...)
sync_data_btn.click(
fn=guarded_fetch_posts_and_mentions,
inputs=[token_state],
outputs=[dashboard_html_output, token_state]
).then(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_data_btn]
).then(
fn=display_main_dashboard,
inputs=[token_state],
outputs=[dashboard_html_output]
)
with gr.TabItem("2οΈβ£ Analytics"):
fetch_analytics_btn = gr.Button("π Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("Waiting for token...")
with gr.Row(): follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row(): eng_rate_plot = gr.Plot()
with gr.Row(): interaction_plot = gr.Plot()
with gr.Row(): eb_plot = gr.Plot()
with gr.Row(): mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics, inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3οΈβ£ Mentions"):
refresh_mentions_display_btn = gr.Button("π Refresh Mentions Display", variant="secondary")
mentions_html = gr.HTML("Mentions data loads from Bubble after sync.")
mentions_plot = gr.Plot()
refresh_mentions_display_btn.click(
fn=run_mentions_tab_display, inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
logging.warning("WARNING: 'Linkedin_client_id' env var not set.")
app.launch(server_name="0.0.0.0", server_port=7860)
|