LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
f9d8231 verified
raw
history blame
15.9 kB
# -- coding: utf-8 --
import gradio as gr
import json
import os
import logging
import html
import pandas as pd # Ensure pandas is imported if you're dealing with DataFrames
# Import functions from your custom modules
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
from gradio_utils import get_url_user_token
# Updated import to include fetch_posts_from_bubble
from Bubble_API_Calls import (
fetch_linkedin_token_from_bubble,
bulk_upload_to_bubble,
fetch_posts_from_bubble # Added new function
)
from Linkedin_Data_API_Calls import (
fetch_linkedin_posts_core,
fetch_comments,
analyze_sentiment,
compile_detailed_posts,
prepare_data_for_bubble
)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def check_token_status(token_state):
"""Checks the status of the LinkedIn token."""
return "βœ… Token available" if token_state and token_state.get("token") else "❌ Token not available"
def process_and_store_bubble_token(url_user_token, org_urn, token_state):
"""
Processes the user token from the URL, fetches LinkedIn token from Bubble,
fetches initial posts from Bubble, and updates the token state and UI accordingly.
Returns updates for status_box, token_state, and sync_posts_to_bubble_btn.
"""
logging.info(f"Processing token with URL user token: '{url_user_token}', Org URN: '{org_urn}'")
# Initialize or copy existing state, adding bubble_posts_df
new_state = token_state.copy() if token_state else {"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None}
# Ensure org_urn is updated from input, and bubble_posts_df is reset/initialized for this run.
# Token will be set later if fetched.
new_state.update({"org_urn": org_urn, "bubble_posts_df": None, "token": new_state.get("token")})
# Determine button properties - default to hidden and non-interactive
button_visible = False
button_interactive = False
client_id = os.environ.get("Linkedin_client_id")
if not client_id:
logging.error("CRITICAL ERROR: 'Linkedin_client_id' environment variable not set.")
new_state["client_id"] = "ENV VAR MISSING"
else:
new_state["client_id"] = client_id
# Attempt to fetch LinkedIn token from Bubble (related to LinkedIn API access)
if url_user_token and "not found" not in url_user_token and "Could not access" not in url_user_token:
logging.info(f"Attempting to fetch LinkedIn token from Bubble with user token: {url_user_token}")
try:
parsed_linkedin_token = fetch_linkedin_token_from_bubble(url_user_token)
if isinstance(parsed_linkedin_token, dict) and "access_token" in parsed_linkedin_token:
new_state["token"] = parsed_linkedin_token # Update token in new_state
logging.info("βœ… LinkedIn Token successfully fetched from Bubble.")
else:
new_state["token"] = None # Explicitly set to None if fetch fails
logging.warning(f"❌ Failed to fetch a valid LinkedIn token from Bubble. Response: {parsed_linkedin_token}")
except Exception as e:
new_state["token"] = None # Explicitly set to None on error
logging.error(f"❌ Exception while fetching LinkedIn token from Bubble: {e}")
else:
new_state["token"] = None # Ensure token is None if no valid url_user_token
logging.info("No valid URL user token provided for LinkedIn token fetch, or an error was indicated.")
# Fetch posts from Bubble using org_urn
current_org_urn = new_state.get("org_urn")
if current_org_urn:
logging.info(f"Attempting to fetch posts from Bubble for org_urn: {current_org_urn}")
try:
# Assuming fetch_posts_from_bubble returns a Pandas DataFrame or None
df_bubble_posts = fetch_posts_from_bubble(current_org_urn)
new_state["bubble_posts_df"] = df_bubble_posts # Store DataFrame in state
if df_bubble_posts is not None and not df_bubble_posts.empty:
logging.info(f"βœ… Successfully fetched {len(df_bubble_posts)} posts from Bubble. Sync button will be enabled.")
button_visible = True
button_interactive = True
else:
logging.info("ℹ️ No posts found in Bubble for this organization or DataFrame is empty. Sync button will remain hidden.")
# button_visible and button_interactive remain False
except Exception as e:
logging.error(f"❌ Error fetching posts from Bubble: {e}")
# button_visible and button_interactive remain False
else:
logging.warning("Org URN not available in state. Cannot fetch posts from Bubble.")
# button_visible and button_interactive remain False
token_status_message = check_token_status(new_state) # Check based on potentially updated new_state["token"]
# Log the determined visibility before creating the update object
logging.info(f"Token processing complete. LinkedIn Token Status: {token_status_message}. Button visible: {button_visible}, Button interactive: {button_interactive}")
# Create a gr.update object for the button
button_component_update = gr.update(visible=button_visible, interactive=button_interactive)
return token_status_message, new_state, button_component_update
def guarded_fetch_posts(token_state):
"""
Fetches LinkedIn posts, analyzes them, and uploads to Bubble.
This function is guarded by token availability.
"""
logging.info("Starting guarded_fetch_posts process.")
if not token_state or not token_state.get("token"): # Checks for LinkedIn token
logging.error("Access denied for guarded_fetch_posts. No LinkedIn token available.")
return "<p style='color:red; text-align:center;'>❌ Access denied. LinkedIn token not available. Please ensure token is fetched via URL parameter.</p>"
client_id = token_state.get("client_id")
token_dict = token_state.get("token") # This is the LinkedIn token dict
org_urn = token_state.get('org_urn')
if not org_urn:
logging.error("Organization URN (org_urn) not found in token_state for guarded_fetch_posts.")
return "<p style='color:red; text-align:center;'>❌ Configuration error: Organization URN missing.</p>"
if not client_id or client_id == "ENV VAR MISSING":
logging.error("Client ID not found or missing in token_state for guarded_fetch_posts.")
return "<p style='color:red; text-align:center;'>❌ Configuration error: LinkedIn Client ID missing (check .env file or environment variables).</p>"
# Additional check: Ensure the button was meant to be clickable (i.e., Bubble posts were found)
# This is an indirect check, as the button's clickability should prevent this if UI works as intended.
# However, adding a check on bubble_posts_df might be redundant if the button is correctly managed.
# For now, relying on the LinkedIn token check as the primary guard for this function.
try:
logging.info(f"Step 1: Fetching core posts for org_urn: {org_urn} using LinkedIn API.")
processed_raw_posts, stats_map, _ = fetch_linkedin_posts_core(client_id, token_dict, org_urn)
if not processed_raw_posts:
logging.info("No posts found to process via LinkedIn API after step 1.")
return "<p style='color:orange; text-align:center;'>ℹ️ No new LinkedIn posts found to process at this time.</p>"
post_urns = [post["id"] for post in processed_raw_posts if post.get("id")]
logging.info(f"Extracted {len(post_urns)} post URNs for further processing.")
logging.info("Step 2: Fetching comments via LinkedIn API.")
all_comments_data = fetch_comments(client_id, token_dict, post_urns, stats_map)
logging.info("Step 3: Analyzing sentiment.")
sentiments_per_post = analyze_sentiment(all_comments_data)
logging.info("Step 4: Compiling detailed posts.")
detailed_posts = compile_detailed_posts(processed_raw_posts, stats_map, sentiments_per_post)
logging.info("Step 5: Preparing data for Bubble.")
li_posts, li_post_stats, li_post_comments = prepare_data_for_bubble(detailed_posts, all_comments_data)
logging.info("Step 6: Uploading data to Bubble.")
bulk_upload_to_bubble(li_posts, "LI_posts")
bulk_upload_to_bubble(li_post_stats, "LI_post_stats")
bulk_upload_to_bubble(li_post_comments, "LI_post_comments")
logging.info("Successfully fetched from LinkedIn and uploaded posts and comments to Bubble.")
return "<p style='color:green; text-align:center;'>βœ… Posts and comments from LinkedIn uploaded to Bubble.</p>"
except ValueError as ve:
logging.error(f"ValueError during LinkedIn data processing: {ve}")
return f"<p style='color:red; text-align:center;'>❌ Error: {html.escape(str(ve))}</p>"
except Exception as e:
logging.exception("An unexpected error occurred in guarded_fetch_posts.") # Logs full traceback
return "<p style='color:red; text-align:center;'>❌ An unexpected error occurred while processing LinkedIn data. Please check logs.</p>"
def guarded_fetch_dashboard(token_state):
"""Fetches and renders the dashboard if token is available."""
if not token_state or not token_state.get("token"):
return "❌ Access denied. No token available for dashboard."
return "<p style='text-align: center; color: #555;'>Dashboard content would load here if implemented.</p>"
def guarded_fetch_analytics(token_state):
"""Fetches and renders analytics if token is available."""
if not token_state or not token_state.get("token"):
return ("❌ Access denied. No token available for analytics.",
None, None, None, None, None, None, None)
return fetch_and_render_analytics(token_state.get("client_id"), token_state.get("token"))
def run_mentions_and_load(token_state):
"""Generates mentions dashboard if token is available."""
if not token_state or not token_state.get("token"):
return ("❌ Access denied. No token available for mentions.", None)
return generate_mentions_dashboard(token_state.get("client_id"), token_state.get("token"))
# --- Gradio UI Blocks ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
# Initialize state with the new field for Bubble DataFrame
token_state = gr.State(value={"token": None, "client_id": None, "org_urn": None, "bubble_posts_df": None})
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
url_user_token_display = gr.Textbox(label="User Token (from URL - Hidden)", interactive=False, visible=False)
status_box = gr.Textbox(label="Overall LinkedIn Token Status", interactive=False, value="Initializing...")
org_urn_display = gr.Textbox(label="Organization URN (from URL - Hidden)", interactive=False, visible=False)
app.load(fn=get_url_user_token, inputs=None, outputs=[url_user_token_display, org_urn_display])
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard & Sync"):
gr.Markdown("Fetch initial data from Bubble. If posts are found, you can choose to sync newer posts from LinkedIn.")
sync_posts_to_bubble_btn = gr.Button(
"πŸ”„ Fetch from LinkedIn, Analyze & Store to Bubble", # Updated label for clarity
variant="primary",
visible=False,
interactive=False
)
dashboard_html_output = gr.HTML(
"<p style='text-align: center; color: #555;'>System initializing... "
"Checking for existing data in Bubble. The 'Fetch from LinkedIn...' button will activate if initial data is found.</p>"
)
# Combined trigger: process tokens and Bubble data once both URL params are potentially loaded.
# Using .then() to chain after initial load.
# The `process_and_store_bubble_token` will run when `org_urn_display` (which is an output of app.load)
# receives its value.
org_urn_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
)
# Fallback if url_user_token_display changes after org_urn_display (less likely but for robustness)
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, org_urn_display, token_state],
outputs=[status_box, token_state, sync_posts_to_bubble_btn]
)
sync_posts_to_bubble_btn.click(
fn=guarded_fetch_posts,
inputs=[token_state],
outputs=[dashboard_html_output]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization (requires LinkedIn token).")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")
with gr.Row():
follower_plot, growth_plot = gr.Plot(), gr.Plot()
with gr.Row():
eng_rate_plot = gr.Plot()
with gr.Row():
interaction_plot = gr.Plot()
with gr.Row():
eb_plot = gr.Plot()
with gr.Row():
mentions_vol_plot, mentions_sentiment_plot = gr.Plot(), gr.Plot()
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state],
outputs=[follower_count, follower_plot, growth_plot, eng_rate_plot,
interaction_plot, eb_plot, mentions_vol_plot, mentions_sentiment_plot]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization (requires LinkedIn token).")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML("<p style='text-align: center; color: #555;'>Waiting for LinkedIn token...</p>")
mentions_plot = gr.Plot()
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
# This app.load updates the status_box based on the initial token_state.
# The process_and_store_bubble_token function will provide a more definitive update soon after.
app.load(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
# Timer to periodically update the LinkedIn token status display
gr.Timer(15.0).tick(fn=lambda ts: check_token_status(ts), inputs=[token_state], outputs=status_box)
if __name__ == "__main__":
if not os.environ.get("Linkedin_client_id"):
logging.warning("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly for LinkedIn API calls.")
app.launch(server_name="0.0.0.0", server_port=7860, share=True)