LinkedinMonitor / eb_agent_module.py
GuglielmoTor's picture
Update eb_agent_module.py
e64ca65 verified
raw
history blame
35.3 kB
# eb_agent_module.py
import pandas as pd
import json
import os
import asyncio
import logging
import numpy as np
import textwrap
# --- Define Dummy Classes with unique names first ---
class _DummyGenAIClientModels: # Represents the dummy model service client
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content_async called for model: {model}")
# Simplified dummy response structure
class DummyPart: text = "# Dummy response from _DummyGenAI async"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
print(f"Dummy _DummyGenAI.Client.models.generate_content called for model: {model}")
class DummyPart: text = "# Dummy response from _DummyGenAI sync"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
return DummyResponse()
class _DummyGenAIClient: # Dummy Client
def __init__(self, api_key=None):
self.api_key = api_key
self.models = _DummyGenAIClientModels()
print(f"Dummy _DummyGenAI.Client initialized {'with api_key' if api_key else '(global API key expected)'}.")
class _DummyGenAIGenerativeModel:
def __init__(self, model_name_in, generation_config_in, safety_settings_in, system_instruction_in):
self.model_name = model_name_in
print(f"Dummy _DummyGenAIGenerativeModel initialized for {model_name_in}")
async def generate_content_async(self, contents, stream=False):
print(f"Dummy _DummyGenAIGenerativeModel.generate_content_async called for {self.model_name}")
class DummyPart: text = f"# Dummy response from dummy _DummyGenAIGenerativeModel ({self.model_name})"
class DummyContent: parts = [DummyPart()]
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []
class DummyResponse: candidates = [DummyCandidate()]; prompt_feedback = None; text = DummyCandidate.content.parts[0].text
return DummyResponse()
class _ActualDummyGenAI: # type: ignore # Renamed the main dummy class
Client = _DummyGenAIClient # Assign inner class
@staticmethod
def configure(api_key):
print(f"Dummy _ActualDummyGenAI.configure called with API key: {'SET' if api_key else 'NOT SET'}")
@staticmethod
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None):
print(f"Dummy _ActualDummyGenAI.GenerativeModel called for model: {model_name}")
return _DummyGenAIGenerativeModel(model_name, generation_config, safety_settings, system_instruction)
@staticmethod
def embed_content(model, content, task_type, title=None):
# This print is crucial for debugging which embed_content is called
print(f"Dummy _ActualDummyGenAI.embed_content called for model: {model}, task_type: {task_type}, title: {title}")
return {"embedding": [0.1] * 768}
class _ActualDummyGenAITypes: # type: ignore # Renamed the main dummy types class
@staticmethod
def GenerationConfig(**kwargs):
print(f"Dummy _ActualDummyGenAITypes.GenerationConfig created with: {kwargs}")
return dict(kwargs)
@staticmethod
def SafetySetting(category, threshold):
print(f"Dummy _ActualDummyGenAITypes.SafetySetting created: category={category}, threshold={threshold}")
return {"category": category, "threshold": threshold}
class HarmCategory:
HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
class HarmBlockThreshold:
BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
class FinishReason: # This should match the structure of the real FinishReason enum if possible
FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER"
class BlockedReason:
BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"; SAFETY = "SAFETY"; OTHER = "OTHER"
# --- Attempt to import the real library ---
_REAL_GENAI_LOADED = False
try:
from google import generativeai as genai # This is the real 'genai'
from google.generativeai import types as genai_types # This is the real 'genai_types'
_REAL_GENAI_LOADED = True
logging.info("Successfully imported 'google.generativeai' library.")
except ImportError:
genai = _ActualDummyGenAI() # Alias to our dummy genai class instance if import fails
genai_types = _ActualDummyGenAITypes() # Alias to our dummy genai_types class instance
logging.warning("Google Generative AI library not found. Using dummy implementations.")
# --- Configuration ---
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
LLM_MODEL_NAME = "gemini-2.0-flash"
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
GENERATION_CONFIG_PARAMS = {
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
}
# Default safety settings list for Gemini
# Ensure genai_types used here is the one defined (real or dummy alias)
try:
DEFAULT_SAFETY_SETTINGS = [
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
]
except Exception as e_safety: # Catch broader exception if dummy types are not perfect
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using genai_types: {e_safety}. Using placeholder list of dicts.")
DEFAULT_SAFETY_SETTINGS = [
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
]
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
if GEMINI_API_KEY and _REAL_GENAI_LOADED:
try:
genai.configure(api_key=GEMINI_API_KEY) # genai is now consistently real or dummy
logging.info(f"Gemini API key configured globally (real genai active: {_REAL_GENAI_LOADED}).")
except Exception as e:
logging.error(f"Failed to configure Gemini API globally: {e}", exc_info=True)
elif not GEMINI_API_KEY and _REAL_GENAI_LOADED:
logging.warning("GEMINI_API_KEY environment variable not set, but real library is loaded. API calls will likely fail.")
elif not _REAL_GENAI_LOADED:
logging.info("Operating in DUMMY mode because 'google-generativeai' library was not found.")
if GEMINI_API_KEY: # Call dummy configure if key is present but library is dummy
genai.configure(api_key=GEMINI_API_KEY)
# --- RAG Documents Definition (Example) ---
rag_documents_data = {
'Title': ["Employer Branding Best Practices 2024", "Attracting Tech Talent", "Employee Advocacy", "Gen Z Expectations"],
'Text': ["Focus on authentic employee stories...", "Tech candidates value challenging projects...", "Encourage employees to share experiences...", "Gen Z values purpose-driven work..."]
}
df_rag_documents = pd.DataFrame(rag_documents_data)
# --- Schema Representation ---
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n"
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n"
schema_str = f"DataFrame 'df_{df_name}':\n Columns: {df.columns.tolist()}\n Shape: {df.shape}\n"
if not df.empty: schema_str += f" Sample Data (first 2 rows):\n{textwrap.indent(df.head(2).to_string(), ' ')}\n"
else: schema_str += " Sample Data: DataFrame is empty.\n"
return schema_str
def get_all_schemas_representation(dataframes_dict: dict) -> str:
if not dataframes_dict: return "No DataFrames provided.\n"
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items())
# --- Advanced RAG System ---
class AdvancedRAGSystem:
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
self.embedding_model_name = embedding_model_name
self.documents_df = documents_df.copy()
self.embeddings_generated = False
# Use _REAL_GENAI_LOADED to determine if real client is available
self.real_client_available_for_rag = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
if self.real_client_available_for_rag:
try:
self._precompute_embeddings()
self.embeddings_generated = True
# This log should only appear if real genai.embed_content was used without printing dummy message
logging.info(f"RAG embeddings precomputed using REAL genai.embed_content for '{self.embedding_model_name}'.")
except Exception as e: logging.error(f"RAG precomputation error with real client: {e}", exc_info=True)
else:
logging.warning(f"RAG embeddings not precomputed. Real GenAI loaded: {_REAL_GENAI_LOADED}, API Key set: {bool(GEMINI_API_KEY)}.")
# If in dummy mode, call dummy precompute to see its log
if not _REAL_GENAI_LOADED:
self._precompute_embeddings() # This will call dummy genai.embed_content
def _embed_fn(self, title: str, text: str) -> list[float]:
# genai here is now consistently the real or the aliased dummy
try:
content_to_embed = text if text else title
if not content_to_embed: return [0.0] * 768
# The call to genai.embed_content will print its own message if it's the dummy
return genai.embed_content(model=self.embedding_model_name, content=content_to_embed, task_type="retrieval_document", title=title if title else None)["embedding"]
except Exception as e:
logging.error(f"Error in _embed_fn for '{title}' (real_genai_loaded: {_REAL_GENAI_LOADED}): {e}", exc_info=True)
return [0.0] * 768
def _precompute_embeddings(self):
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
mask = (self.documents_df['Text'].notna() & (self.documents_df['Text'] != '')) | (self.documents_df['Title'].notna() & (self.documents_df['Title'] != ''))
if not mask.any(): logging.warning("No content for RAG embeddings."); return
# This will call _embed_fn, which calls the current 'genai.embed_content' (real or dummy)
self.documents_df.loc[mask, 'Embeddings'] = self.documents_df[mask].apply(lambda row: self._embed_fn(row.get('Title', ''), row.get('Text', '')), axis=1)
logging.info(f"Applied RAG embedding function to {mask.sum()} rows (real_genai_loaded: {_REAL_GENAI_LOADED}).")
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
if not (_REAL_GENAI_LOADED and GEMINI_API_KEY): # Check if we can use real embeddings
# If not using real, and dummy is active, dummy embed_content will print.
# If real loaded but no key, this will also be skipped for actual API call.
if not _REAL_GENAI_LOADED: # If in dummy mode, call dummy embed_content to see log
genai.embed_content(model=self.embedding_model_name, content=query_text, task_type="retrieval_query") # Call for log
logging.warning(f"Skipping real RAG retrieval. Real GenAI: {_REAL_GENAI_LOADED}, API Key: {bool(GEMINI_API_KEY)}")
return "\n[RAG Context]\nReal RAG retrieval skipped (check logs for mode).\n"
# At this point, _REAL_GENAI_LOADED and GEMINI_API_KEY are true
# So, genai.embed_content should be the real one.
try:
query_embedding = np.array(genai.embed_content(model=self.embedding_model_name, content=query_text, task_type="retrieval_query")["embedding"])
valid_df = self.documents_df.dropna(subset=['Embeddings'])
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))] # Ensure not all zeros
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings after filtering.\n"
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
if query_embedding.shape[0] != doc_embeddings.shape[1]: return "\n[RAG Context]\nEmbedding dimension mismatch.\n"
dot_products = np.dot(doc_embeddings, query_embedding)
num_to_retrieve = min(top_k, len(valid_df))
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
except Exception as e:
logging.error(f"Error in RAG retrieve_relevant_info (real mode): {e}", exc_info=True)
return f"\n[RAG Context]\nError during RAG retrieval (real mode): {type(e).__name__} - {e}\n"
# --- PandasLLM Class (Gemini-Powered using genai.Client) ---
class PandasLLM:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
data_privacy=True, force_sandbox=True):
self.llm_model_name = llm_model_name
self.generation_config_dict = generation_config_dict
self.safety_settings_list = safety_settings_list
self.data_privacy = data_privacy
self.force_sandbox = force_sandbox
self.client = None
self.model_service = None
if _REAL_GENAI_LOADED and GEMINI_API_KEY:
try:
self.client = genai.Client() # Should be the REAL genai.Client
self.model_service = self.client.models
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
except Exception as e:
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client: {e}", exc_info=True)
# No explicit fallback to dummy here; _call_gemini_api_async will use the global dummy if self.model_service is None and _REAL_GENAI_LOADED is False
else:
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}. Will use DUMMY if library not loaded.")
if not _REAL_GENAI_LOADED: # If import failed, genai is already the dummy
self.client = genai.Client() # Instantiates _ActualDummyGenAI.Client
self.model_service = self.client.models # Uses _DummyGenAIClientModels
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models because real library failed to load.")
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
# Determine if we should use the real service or expect dummy behavior
use_real_service = _REAL_GENAI_LOADED and GEMINI_API_KEY and self.model_service is not None
# If not using real service, and we are in dummy mode (library not loaded),
# self.model_service should be the dummy one.
# If real library loaded but no key, self.model_service might be None or real (but calls would fail).
active_model_service = self.model_service
if not use_real_service and not _REAL_GENAI_LOADED:
# Ensure we have a dummy service if we are in full dummy mode and self.model_service wasn't set
# This case should ideally be covered by PandasLLM.__init__
if active_model_service is None:
logging.debug("PandasLLM._call_gemini_api_async: active_model_service is None in dummy mode, attempting to get dummy service.")
dummy_client_instance = _ActualDummyGenAI.Client() # Get a fresh dummy client models service
active_model_service = dummy_client_instance.models
if not active_model_service:
logging.error("PandasLLM: Model service not available (real or dummy). Cannot call API.")
return "# Error: Gemini model service not available."
gemini_history = []
if history:
for entry in history:
role_for_api = "model" if entry.get("role") == "assistant" else entry.get("role", "user")
text_content = entry.get("content", "")
gemini_history.append({"role": role_for_api, "parts": [{"text": text_content}]})
current_prompt_content = [{"role": "user", "parts": [{"text": prompt_text}]}]
contents_for_api = gemini_history + current_prompt_content
model_id_for_api = self.llm_model_name
if not model_id_for_api.startswith("models/"):
model_id_for_api = f"models/{model_id_for_api}"
api_generation_config = None
if self.generation_config_dict:
try: # genai_types is now consistently real or dummy alias
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
except Exception as e_cfg:
logging.error(f"Error creating GenerationConfig object (real_loaded: {_REAL_GENAI_LOADED}): {e_cfg}. Using dict fallback.")
api_generation_config = self.generation_config_dict
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealMode: {use_real_service}) ---\nConfig: {api_generation_config}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
try:
# This call will use either the real model_service or the dummy one.
# The dummy service's methods have print statements.
response = await active_model_service.generate_content_async(
model=model_id_for_api,
contents=contents_for_api,
generation_config=api_generation_config,
safety_settings=self.safety_settings_list
)
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and \
hasattr(response.prompt_feedback, 'block_reason') and response.prompt_feedback.block_reason:
block_reason_val = response.prompt_feedback.block_reason
block_reason_str = str(block_reason_val.name if hasattr(block_reason_val, 'name') else block_reason_val)
logging.warning(f"Prompt blocked by API. Reason: {block_reason_str}.")
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
llm_output = ""
if hasattr(response, 'text') and isinstance(response.text, str):
llm_output = response.text
elif response.candidates: # Standard way to get text from Gemini response
candidate = response.candidates[0]
if candidate.content and candidate.content.parts:
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
if not llm_output and candidate.finish_reason:
finish_reason_val = candidate.finish_reason
# Try to get enum name if available (for real API) or use string (for dummy)
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
if finish_reason_str == "SAFETY":
safety_messages = []
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings:
for rating in candidate.safety_ratings:
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category)
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability)
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}")
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}")
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}"
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
else:
logging.error(f"Unexpected API response structure: {str(response)[:500]}")
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
return llm_output
# Specific exceptions for the real API, might not be raised by dummy
except genai_types.BlockedPromptException as bpe: # type: ignore
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
return f"# Error: Prompt blocked. Details: {bpe}"
except genai_types.StopCandidateException as sce: # type: ignore
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
return f"# Error: Content generation stopped. Details: {sce}"
except Exception as e:
logging.error(f"Error calling Gemini API (RealMode: {use_real_service}): {e}", exc_info=True)
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
if self.force_sandbox:
code_to_execute = ""
if "```python" in llm_response_text:
try:
code_block_match = llm_response_text.split("```python\n", 1)
if len(code_block_match) > 1: code_to_execute = code_block_match[1].split("\n```", 1)[0]
else:
code_block_match = llm_response_text.split("```python", 1)
if len(code_block_match) > 1:
code_to_execute = code_block_match[1].split("```", 1)[0]
if code_to_execute.startswith("\n"): code_to_execute = code_to_execute[1:]
except IndexError: code_to_execute = ""
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
# Log if it's an error from LLM or if it's just non-code/comment response.
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
# If it's not an error and not code, it might be a natural language refusal or comment.
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0: # Heuristic for non-code text
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
return llm_response_text
logging.info(f"\n--- Code to Execute: ---\n{code_to_execute}\n----------------------\n")
from io import StringIO
import sys
old_stdout, sys.stdout = sys.stdout, StringIO()
exec_globals = {'pd': pd, 'np': np}
if dataframes_dict:
for name, df_instance in dataframes_dict.items():
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
else: logging.warning(f"Item '{name}' not a DataFrame for sandbox exec.")
try:
exec(code_to_execute, exec_globals, {})
final_output_str = sys.stdout.getvalue()
if not final_output_str.strip():
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
return "# LLM generated only comments or empty code. No output produced by sandbox."
return "# Code executed successfully by sandbox, but it did not produce any printed output. Ensure print() for results."
return final_output_str
except Exception as e:
logging.error(f"Sandbox Execution Error: {e}\nCode was:\n{code_to_execute}", exc_info=True)
indented_code = textwrap.indent(code_to_execute, '# ')
return f"# Sandbox Execution Error: {type(e).__name__}: {e}\n# --- Code that caused error: ---\n{indented_code}"
finally: sys.stdout = old_stdout
else: return llm_response_text
# --- Employer Branding Agent ---
class EmployerBrandingAgent:
def __init__(self, llm_model_name: str,
generation_config_dict: dict,
safety_settings_list: list,
all_dataframes: dict,
rag_documents_df: pd.DataFrame,
embedding_model_name: str,
data_privacy=True, force_sandbox=True):
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
self.all_dataframes = all_dataframes if all_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
self.chat_history = []
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}).")
def _build_prompt(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
prompt = f"You are a highly skilled '{role}'. Your goal is to provide actionable employer branding insights by analyzing Pandas DataFrames and RAG documents.\n"
if self.pandas_llm.data_privacy: prompt += "IMPORTANT: Adhere to data privacy. Summarize/aggregate PII.\n"
if self.pandas_llm.force_sandbox:
prompt += "\n--- TASK: PYTHON CODE GENERATION FOR INSIGHTS ---\n"
prompt += "GENERATE PYTHON CODE using Pandas. The code's `print()` statements MUST output final textual insights/answers.\n"
prompt += "Output ONLY the Python code block (```python ... ```).\n"
prompt += "Access DataFrames as 'df_name' (e.g., `df_follower_stats`).\n"
prompt += "\n--- CRITICAL INSTRUCTIONS FOR PYTHON CODE OUTPUT ---\n"
prompt += "1. **Print Insights, Not Just Data:** `print()` clear, actionable insights. NOT raw DataFrames unless specifically asked for a table.\n"
prompt += " Good: `print(f'Insight: Theme {top_theme} has {engagement_increase}% higher engagement.')`\n"
prompt += " Avoid: `print(df_result)` (for insight queries).\n"
prompt += "2. **Synthesize with RAG:** Weave RAG takeaways into printed insights. Ex: `print(f'Data shows X. RAG says Y. Recommend Z.')`\n"
prompt += "3. **Comments & Clarity:** Write clean, commented code.\n"
prompt += "4. **Handle Issues in Code:** If ambiguous, `print()` a question. If data unavailable, `print()` explanation. For non-analytical queries, `print()` polite reply.\n"
prompt += "5. **Function Usage:** Call functions and `print()` their (insightful) results.\n"
else: # Not force_sandbox
prompt += "\n--- TASK: DIRECT TEXTUAL INSIGHT GENERATION ---\n"
prompt += "Analyze data and RAG, then provide a comprehensive textual answer with insights. Explain step-by-step.\n"
prompt += "\n--- AVAILABLE DATA AND SCHEMAS ---\n"
prompt += self.schemas_representation if self.schemas_representation.strip() != "No DataFrames provided." else "No DataFrames loaded.\n"
# RAG retrieval will use the current state of 'genai' (real or dummy)
rag_context = self.rag_system.retrieve_relevant_info(user_query)
meaningful_rag_keywords = ["Error", "No valid", "No relevant", "Cannot retrieve", "not available", "not generated", "Skipped"]
is_meaningful_rag = bool(rag_context.strip()) and not any(keyword in rag_context for keyword in meaningful_rag_keywords)
if is_meaningful_rag:
prompt += f"\n--- RAG CONTEXT (Real GenAI for RAG: {self.rag_system.real_client_available_for_rag}) ---\n{rag_context}\n"
else:
prompt += f"\n--- RAG CONTEXT (Real GenAI for RAG: {self.rag_system.real_client_available_for_rag}) ---\nNo specific RAG context found, RAG error, or RAG skipped. Details: {rag_context[:100]}...\n"
prompt += f"\n--- USER QUERY ---\n{user_query}\n"
if task_decomposition_hint: prompt += f"\n--- GUIDANCE ---\n{task_decomposition_hint}\n"
if cot_hint:
if self.pandas_llm.force_sandbox:
prompt += "\n--- PYTHON CODE GENERATION THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources (DFs, RAG)? 3. Analysis plan (comments)? 4. Write Python code. 5. CRITICAL: Formulate & `print()` textual insights. 6. Review. 7. Output ONLY ```python ... ```.\n"
else: # Not force_sandbox
prompt += "\n--- TEXTUAL RESPONSE THOUGHT PROCESS ---\n"
prompt += "1. Goal? 2. Data sources? 3. Formulate insights (data + RAG). 4. Structure: explanation, then insights.\n"
return prompt
async def process_query(self, user_query: str, role="Employer Branding Analyst & Strategist", task_decomposition_hint=None, cot_hint=True) -> str:
current_turn_history_for_llm = self.chat_history[:]
self.chat_history.append({"role": "user", "content": user_query})
full_prompt = self._build_prompt(user_query, role, task_decomposition_hint, cot_hint)
logging.info(f"Built prompt for query: {user_query[:100]}... (Real GenAI: {_REAL_GENAI_LOADED})")
response_text = await self.pandas_llm.query(full_prompt, self.all_dataframes, history=current_turn_history_for_llm)
self.chat_history.append({"role": "assistant", "content": response_text})
MAX_HISTORY_TURNS = 5
if len(self.chat_history) > MAX_HISTORY_TURNS * 2:
self.chat_history = self.chat_history[-(MAX_HISTORY_TURNS * 2):]
logging.info(f"Chat history truncated.")
return response_text
def update_dataframes(self, new_dataframes: dict):
self.all_dataframes = new_dataframes if new_dataframes else {}
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
logging.info(f"Agent DataFrames updated. Schemas: {self.schemas_representation[:100]}...")
def clear_chat_history(self): self.chat_history = []; logging.info("Agent chat history cleared.")
# --- Example Usage (Conceptual) ---
async def main_test():
# This test will reflect whether _REAL_GENAI_LOADED is true or false
logging.info(f"Starting main_test for EmployerBrandingAgent (Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)})")
df_follower_stats = pd.DataFrame({'date': pd.to_datetime(['2023-01-01']), 'country': ['USA'], 'new_followers': [10]})
df_posts = pd.DataFrame({'post_id': [1], 'theme': ['Culture'], 'engagement_rate': [0.05]})
test_dataframes = {"follower_stats": df_follower_stats, "posts": df_posts}
if not GEMINI_API_KEY and _REAL_GENAI_LOADED:
logging.warning("GEMINI_API_KEY not set but real library loaded. Real API calls in test will fail.")
agent = EmployerBrandingAgent(LLM_MODEL_NAME, GENERATION_CONFIG_PARAMS, DEFAULT_SAFETY_SETTINGS, test_dataframes, df_rag_documents, GEMINI_EMBEDDING_MODEL_NAME, force_sandbox=True)
queries = ["Which post theme has the highest average engagement rate? Provide an insight.", "Hello!"]
for query in queries:
logging.info(f"\n\n--- Query: {query} ---")
response = await agent.process_query(user_query=query)
logging.info(f"--- Response for '{query}': ---\n{response}\n---------------------------\n")
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.1) # Small delay for real API
if __name__ == "__main__":
# Note: To test with real API, ensure GEMINI_API_KEY is set in your environment
# and 'google-generativeai' is installed.
# Otherwise, it will run in dummy mode.
# Check mode before running test
print(f"Script starting... Real GenAI Library Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
try:
asyncio.run(main_test())
except RuntimeError as e:
if "asyncio.run() cannot be called from a running event loop" in str(e):
print("Skipping asyncio.run(main_test()) as it seems to be in an existing event loop (e.g., Jupyter).")
print("If in Jupyter, you might need to 'await main_test()' in a cell after defining it.")
else:
raise
except Exception as e_main:
print(f"Error during main_test execution: {e_main}")