LinkedinMonitor / app.py
GuglielmoTor's picture
Update app.py
fc7a7e4 verified
raw
history blame
10.1 kB
# -*- coding: utf-8 -*-
import gradio as gr
import json
import os # Added to access environment variables
# Assuming these custom modules exist in your project directory or Python path
from Data_Fetching_and_Rendering import fetch_and_render_dashboard
from analytics_fetch_and_rendering import fetch_and_render_analytics
from mentions_dashboard import generate_mentions_dashboard
# Import the function from your utils file
from gradio_utils import get_url_user_token
# Import the Bubble API call function (ensure filename matches: Bubble_API_Calls.py)
from Bubble_API_Calls import fetch_linkedin_token_from_bubble
# --- Session State dependent functions ---
def check_token_status(current_token_state):
"""Checks if a token exists in the session state."""
# Only check for the presence of the token
if current_token_state and current_token_state.get("token"):
return "βœ… Token available"
return "❌ Token not available" # Changed message for clarity
# --- Function to process and store token from Bubble ---
def process_and_store_bubble_token(url_user_token_str, current_token_state):
"""
Fetches token from Bubble, loads client_id from env, updates session state,
and returns UI update values.
Args:
url_user_token_str: The token string extracted from the URL.
current_token_state: The current session state for the token.
Returns:
Tuple: (bubble_api_status_msg, overall_token_status_msg, updated_token_state)
"""
bubble_api_status_msg = "Waiting for URL token..."
# Initialize new_token_state, removing the 'status' field
new_token_state = current_token_state.copy() if current_token_state else {"token": None, "client_id": None}
new_token_state["token"] = None # Assume no token until successfully fetched
# Attempt to load Linkedin_client_id from environment variable
linkedin_client_id_from_env = os.environ.get("Linkedin_client_id")
if not linkedin_client_id_from_env:
bubble_api_status_msg = "❌ CRITICAL ERROR: 'Linkedin_client_id' environment variable not set."
print(bubble_api_status_msg)
new_token_state["client_id"] = "ENV VAR MISSING" # Indicate error in state
# Return values: bubble_api_status, overall_token_status, new_token_state
return check_token_status(new_token_state), new_token_state
# Store client_id from env in the state, regardless of token outcome (if env var exists)
new_token_state["client_id"] = linkedin_client_id_from_env
if not url_user_token_str or "not found" in url_user_token_str or "Could not access" in url_user_token_str:
bubble_api_status_msg = f"ℹ️ No valid user token from URL to query Bubble. ({url_user_token_str})"
# Client ID is known (if env var was found), but no token to fetch
return check_token_status(new_token_state), new_token_state
print(f"Attempting to fetch token from Bubble with user token: {url_user_token_str}") # Changed "state" to "user token" for clarity
parsed_token_dict = fetch_linkedin_token_from_bubble(url_user_token_str)
if parsed_token_dict and isinstance(parsed_token_dict, dict) and "access_token" in parsed_token_dict:
new_token_state["token"] = parsed_token_dict # Store the actual token
bubble_api_status_msg = f"βœ… Token successfully fetched from Bubble for user token: {url_user_token_str}. Client ID loaded."
print(bubble_api_status_msg)
else:
bubble_api_status_msg = f"❌ Failed to fetch a valid token from Bubble for user token: {url_user_token_str}. Check console logs from Bubble_API_Calls.py."
print(bubble_api_status_msg)
# Token fetch failed, token remains None. Client_id is already set if env var was found.
# Return values: bubble_api_status, overall_token_status, new_token_state
return check_token_status(new_token_state), new_token_state
# --- Guarded fetch functions (now use token_state, checking only for token presence) ---
def guarded_fetch_dashboard(current_token_state):
# Check only for the presence of the token
if not (current_token_state and current_token_state.get("token")):
return "<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>"
html = fetch_and_render_dashboard(
current_token_state.get("client_id"), # Use .get for safety
current_token_state.get("token")
)
return html
def guarded_fetch_analytics(current_token_state):
# Check only for the presence of the token
if not (current_token_state and current_token_state.get("token")):
return (
"<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>",
None, None, None, None, None, None, None
)
client_id = current_token_state.get("client_id")
token_data = current_token_state.get("token")
count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics = fetch_and_render_analytics(
client_id,
token_data
)
return count_md, plot, growth_plot, avg_post_eng_rate, interaction_metrics, eb_metrics, mentions_vol_metrics, mentions_sentiment_metrics
def run_mentions_and_load(current_token_state):
# Check only for the presence of the token
if not (current_token_state and current_token_state.get("token")):
return ("<p style='color:red; text-align:center;'>❌ Access denied. No token available.</p>", None)
html, fig = generate_mentions_dashboard(
current_token_state.get("client_id"),
current_token_state.get("token")
)
return html, fig
# --- Build the Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="LinkedIn Post Viewer & Analytics") as app:
# Modified token_state: removed 'status', client_id will be populated from env
token_state = gr.State(value={"token": None, "client_id": None})
gr.Markdown("# πŸš€ LinkedIn Organization Post Viewer & Analytics")
gr.Markdown("Token is supplied via URL parameter for Bubble.io lookup. Then explore dashboard and analytics.")
url_user_token_display = gr.Textbox(
label="User Token (from URL - Hidden)",
interactive=False,
placeholder="Attempting to load from URL...",
visible=False # Kept hidden as per original logic
)
status_box = gr.Textbox(label="Overall Token Status", interactive=False, placeholder="Waiting for token check...") # Added placeholder
app.load(
fn=get_url_user_token,
inputs=None,
outputs=[url_user_token_display]
)
# Modified outputs for process_and_store_bubble_token
url_user_token_display.change(
fn=process_and_store_bubble_token,
inputs=[url_user_token_display, token_state],
outputs=[status_box, token_state] # Removed client_display
)
# app.load to initialize status_box based on initial token_state
app.load(fn=check_token_status, inputs=[token_state], outputs=status_box)
# Removed app.load for get_active_client_id and client_display
timer = gr.Timer(5.0)
timer.tick(fn=check_token_status, inputs=[token_state], outputs=status_box)
# Removed timer.tick for get_active_client_id and client_display
with gr.Tabs():
with gr.TabItem("1️⃣ Dashboard"):
gr.Markdown("View your organization's recent posts and their engagement statistics.")
fetch_dashboard_btn = gr.Button("πŸ“Š Fetch Posts & Stats", variant="primary")
dashboard_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
fetch_dashboard_btn.click(
fn=guarded_fetch_dashboard,
inputs=[token_state],
outputs=[dashboard_html]
)
with gr.TabItem("2️⃣ Analytics"):
gr.Markdown("View follower count and monthly gains for your organization.")
fetch_analytics_btn = gr.Button("πŸ“ˆ Fetch Follower Analytics", variant="primary")
follower_count = gr.Markdown("<p style='text-align: center; color: #555;'>Waiting for token...</p>")
with gr.Row():
follower_plot = gr.Plot(visible=True)
growth_rate_plot = gr.Plot(visible=True)
with gr.Row():
post_eng_rate_plot = gr.Plot(visible=True)
with gr.Row():
interaction_data = gr.Plot(visible=True)
with gr.Row():
eb_data = gr.Plot(visible=True)
with gr.Row():
mentions_vol_data = gr.Plot(visible=True)
mentions_sentiment_data = gr.Plot(visible=True)
fetch_analytics_btn.click(
fn=guarded_fetch_analytics,
inputs=[token_state],
outputs=[follower_count, follower_plot, growth_rate_plot, post_eng_rate_plot, interaction_data, eb_data, mentions_vol_data, mentions_sentiment_data]
)
with gr.TabItem("3️⃣ Mentions"):
gr.Markdown("Analyze sentiment of recent posts that mention your organization.")
fetch_mentions_btn = gr.Button("🧠 Fetch Mentions & Sentiment", variant="primary")
mentions_html = gr.HTML(value="<p style='text-align: center; color: #555;'>Waiting for token...</p>")
mentions_plot = gr.Plot(visible=True)
fetch_mentions_btn.click(
fn=run_mentions_and_load,
inputs=[token_state],
outputs=[mentions_html, mentions_plot]
)
if __name__ == "__main__":
# Ensure the Linkedin_client_id environment variable is set before launching.
# You might want to add a check here and print a warning if it's not set.
if not os.environ.get("Linkedin_client_id"):
print("WARNING: The 'Linkedin_client_id' environment variable is not set. The application may not function correctly.")
app.launch(server_name="0.0.0.0", server_port=7860, share=True)