Spaces:
Running
Running
Update eb_agent_module.py
Browse files- eb_agent_module.py +413 -78
eb_agent_module.py
CHANGED
@@ -7,102 +7,437 @@ import numpy as np
|
|
7 |
import textwrap
|
8 |
|
9 |
try:
|
10 |
-
from google import genai
|
11 |
-
from google.
|
|
|
12 |
except ImportError:
|
13 |
-
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# Configuration
|
18 |
-
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
19 |
-
LLM_MODEL_NAME = "gemini-2.0-flash"
|
20 |
-
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
class AdvancedRAGSystem:
|
|
|
|
|
|
|
25 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
26 |
-
self.documents_df = documents_df
|
27 |
self.embedding_model_name = embedding_model_name
|
28 |
-
self.embeddings =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
)
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
scores = np.dot(self.embeddings, query_vector)
|
50 |
-
top_indices = np.argsort(scores)[-top_k:][::-1]
|
51 |
-
context = "\n\n".join(self.documents_df.iloc[i]['text'] for i in top_indices)
|
52 |
-
return context
|
53 |
|
54 |
class EmployerBrandingAgent:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
for key, df in self.all_dataframes.items():
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
schema_descriptions.append(schema)
|
67 |
return "\n".join(schema_descriptions)
|
68 |
|
69 |
-
def
|
70 |
-
|
71 |
-
prompt
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
return answer
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
def clear_chat_history(self):
|
|
|
107 |
self.chat_history = []
|
108 |
-
logging.info("EmployerBrandingAgent chat history cleared.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import textwrap
|
8 |
|
9 |
try:
|
10 |
+
from google import generativeai as genai
|
11 |
+
from google.generativeai import types as genai_types # For GenerateContentConfig, SafetySetting etc.
|
12 |
+
from google.generativeai.types import HarmCategory, HarmBlockThreshold # Specific enums
|
13 |
except ImportError:
|
14 |
+
logging.error("Google Generative AI library not found. Please install it: pip install google-generativeai", exc_info=True)
|
15 |
+
# Define dummy classes/variables if import fails, so app.py can try to run
|
16 |
+
# (though app.py already has EB_AGENT_AVAILABLE check)
|
17 |
+
class genai: Client = None # type: ignore
|
18 |
+
class genai_types: # type: ignore
|
19 |
+
EmbedContentConfig = None
|
20 |
+
GenerateContentConfig = None
|
21 |
+
SafetySetting = None
|
22 |
+
class HarmCategory: # type: ignore
|
23 |
+
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
|
24 |
+
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
|
25 |
+
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
|
26 |
+
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
|
27 |
+
class HarmBlockThreshold: # type: ignore
|
28 |
+
BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"
|
29 |
+
BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"
|
30 |
+
BLOCK_NONE = "BLOCK_NONE"
|
31 |
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# --- Configuration Constants ---
|
34 |
+
# These are defined here because app.py imports them.
|
35 |
+
# User should ensure these are appropriate for their needs.
|
36 |
+
|
37 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
38 |
+
if not GEMINI_API_KEY:
|
39 |
+
logging.warning("GEMINI_API_KEY environment variable not set. EB Agent will not function.")
|
40 |
+
|
41 |
+
# Model names (as used in app.py imports from this module)
|
42 |
+
LLM_MODEL_NAME = "gemini-1.5-flash-latest" # Changed to 1.5-flash as it's generally preferred; user had 2.0-flash. Adjust if needed.
|
43 |
+
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004" # Common embedding model; user had gemini-embedding-exp-03-07. Adjust if needed.
|
44 |
+
|
45 |
+
# Default Generation Config (app.py imports this as EB_AGENT_GEN_CONFIG)
|
46 |
+
GENERATION_CONFIG_PARAMS = {
|
47 |
+
"temperature": 0.7,
|
48 |
+
"top_p": 0.95,
|
49 |
+
"top_k": 40,
|
50 |
+
"max_output_tokens": 8192,
|
51 |
+
"candidate_count": 1, # Important for non-streaming
|
52 |
+
# "stop_sequences": [...] # Optional
|
53 |
+
}
|
54 |
+
|
55 |
+
# Default Safety Settings (app.py imports this as EB_AGENT_SAFETY_SETTINGS)
|
56 |
+
DEFAULT_SAFETY_SETTINGS = [
|
57 |
+
{"category": HarmCategory.HARM_CATEGORY_HATE_SPEECH, "threshold": HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE},
|
58 |
+
{"category": HarmCategory.HARM_CATEGORY_HARASSMENT, "threshold": HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE},
|
59 |
+
{"category": HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, "threshold": HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE},
|
60 |
+
{"category": HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, "threshold": HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE},
|
61 |
+
]
|
62 |
+
|
63 |
+
# Placeholder for RAG documents DataFrame (app.py imports this as eb_agent_default_rag_docs)
|
64 |
+
# In a real application, this would be loaded from a file or database.
|
65 |
+
df_rag_documents = pd.DataFrame({
|
66 |
+
'text': [
|
67 |
+
"Employer branding focuses on how an organization is perceived as an employer by potential and current employees.",
|
68 |
+
"Key metrics for employer branding include employee engagement, candidate quality, and retention rates.",
|
69 |
+
"LinkedIn is a crucial platform for showcasing company culture and attracting talent.",
|
70 |
+
"Analyzing follower demographics and post engagement helps refine employer branding strategies."
|
71 |
+
]
|
72 |
+
})
|
73 |
+
|
74 |
+
# --- Client Initialization ---
|
75 |
+
# This client will be used by the agent instances.
|
76 |
+
# It's initialized once when the module is loaded.
|
77 |
+
client = None
|
78 |
+
if GEMINI_API_KEY and genai.Client: # Check if genai.Client is not None (due to dummy class on import error)
|
79 |
+
try:
|
80 |
+
# genai.configure(api_key=GEMINI_API_KEY) # Alternative: global configuration
|
81 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
82 |
+
logging.info("Google GenAI client initialized successfully.")
|
83 |
+
except Exception as e:
|
84 |
+
logging.error(f"Failed to initialize Google GenAI client: {e}", exc_info=True)
|
85 |
+
else:
|
86 |
+
logging.warning("Google GenAI client could not be initialized (GEMINI_API_KEY missing or library import failed).")
|
87 |
+
|
88 |
|
89 |
class AdvancedRAGSystem:
|
90 |
+
"""
|
91 |
+
Handles Retrieval Augmented Generation by embedding documents and finding relevant context for queries.
|
92 |
+
"""
|
93 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
94 |
+
self.documents_df = documents_df.copy() # Work on a copy
|
95 |
self.embedding_model_name = embedding_model_name
|
96 |
+
self.embeddings: np.ndarray | None = None # Populated by async initialize_embeddings
|
97 |
+
logging.info(f"AdvancedRAGSystem initialized with embedding model: {self.embedding_model_name}")
|
98 |
+
|
99 |
+
def _embed_single_document_sync(self, text: str) -> np.ndarray:
|
100 |
+
"""Synchronous helper to embed a single piece of text."""
|
101 |
+
if not client:
|
102 |
+
raise ConnectionError("GenAI client not initialized for RAG embedding.")
|
103 |
+
if not text or not isinstance(text, str): # Basic validation
|
104 |
+
logging.warning("Attempted to embed empty or non-string text. Returning zero vector.")
|
105 |
+
# Attempt to get model's embedding dimension, otherwise use a common default (e.g., 768)
|
106 |
+
# This is tricky without a live model call. For now, let's assume it will be filtered or handled.
|
107 |
+
# If we must return a vector, its dimensionality needs to be known.
|
108 |
+
# For simplicity, errors during embedding will be logged and might lead to skipping the doc.
|
109 |
+
raise ValueError("Cannot embed empty or non-string text.")
|
110 |
+
|
111 |
+
# Using client.models.embed_content as per user's provided snippets
|
112 |
+
response = client.models.embed_content(
|
113 |
+
model=self.embedding_model_name, # e.g., "text-embedding-004" or "gemini-embedding-exp-03-07"
|
114 |
+
contents=text, # API takes 'contents' (plural) but can be a single string for single embedding
|
115 |
+
config=genai_types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY") if genai_types.EmbedContentConfig else None
|
116 |
)
|
117 |
+
# Assuming response.embeddings is the list of floats for a single content string, as per user's snippet.
|
118 |
+
return np.array(response.embeddings)
|
119 |
+
|
120 |
+
async def initialize_embeddings(self):
|
121 |
+
"""Asynchronously embeds all documents in the documents_df. Should be called once."""
|
122 |
+
if self.documents_df.empty:
|
123 |
+
logging.info("RAG documents DataFrame is empty. No embeddings to initialize.")
|
124 |
+
self.embeddings = np.array([])
|
125 |
+
return
|
126 |
+
|
127 |
+
if not client:
|
128 |
+
logging.error("GenAI client not available for RAG embedding initialization.")
|
129 |
+
self.embeddings = np.array([])
|
130 |
+
return
|
131 |
+
|
132 |
+
logging.info(f"Starting RAG document embedding for {len(self.documents_df)} documents...")
|
133 |
+
embedded_docs_list = []
|
134 |
+
for index, row in self.documents_df.iterrows():
|
135 |
+
text_to_embed = row.get('text')
|
136 |
+
if not text_to_embed or not isinstance(text_to_embed, str):
|
137 |
+
logging.warning(f"Skipping document at index {index} due to invalid text: {text_to_embed}")
|
138 |
+
continue
|
139 |
+
try:
|
140 |
+
# Wrap the synchronous SDK call in asyncio.to_thread
|
141 |
+
embedding_array = await asyncio.to_thread(self._embed_single_document_sync, text_to_embed)
|
142 |
+
embedded_docs_list.append(embedding_array)
|
143 |
+
except Exception as e:
|
144 |
+
logging.error(f"Error embedding document text (index {index}) '{str(text_to_embed)[:50]}...': {e}", exc_info=False) # exc_info=False for brevity in loop
|
145 |
+
|
146 |
+
if not embedded_docs_list:
|
147 |
+
self.embeddings = np.array([])
|
148 |
+
logging.warning("No documents were successfully embedded for RAG.")
|
149 |
+
else:
|
150 |
+
try:
|
151 |
+
self.embeddings = np.vstack(embedded_docs_list)
|
152 |
+
logging.info(f"Successfully embedded {len(embedded_docs_list)} documents for RAG. Embedding matrix shape: {self.embeddings.shape}")
|
153 |
+
except ValueError as ve: # Handles cases like empty list or inconsistent shapes if errors weren't caught properly
|
154 |
+
logging.error(f"Error stacking embeddings: {ve}. Check individual embedding errors.", exc_info=True)
|
155 |
+
self.embeddings = np.array([])
|
156 |
+
|
157 |
+
|
158 |
+
async def retrieve_relevant_info(self, query: str, top_k: int = 3) -> str:
|
159 |
+
"""Retrieves relevant document snippets for a given query using vector similarity."""
|
160 |
+
if self.embeddings is None or self.embeddings.size == 0 or self.documents_df.empty:
|
161 |
+
logging.debug("RAG system not initialized or no documents/embeddings available for retrieval.")
|
162 |
+
return ""
|
163 |
+
if not query or not isinstance(query, str):
|
164 |
+
logging.debug("Empty or invalid query for RAG retrieval.")
|
165 |
+
return ""
|
166 |
+
if not client:
|
167 |
+
logging.error("GenAI client not available for RAG query embedding.")
|
168 |
+
return ""
|
169 |
+
|
170 |
+
try:
|
171 |
+
query_vector = await asyncio.to_thread(self._embed_single_document_sync, query)
|
172 |
+
except Exception as e:
|
173 |
+
logging.error(f"Error embedding query '{str(query)[:50]}...': {e}", exc_info=False)
|
174 |
+
return ""
|
175 |
+
|
176 |
+
if query_vector.ndim == 0 or query_vector.size == 0:
|
177 |
+
logging.warning(f"Query vector embedding failed or is empty for query: {str(query)[:50]}")
|
178 |
+
return ""
|
179 |
+
if query_vector.ndim > 1: # Should be 1D
|
180 |
+
query_vector = query_vector.flatten()
|
181 |
+
|
182 |
+
try:
|
183 |
+
# Cosine similarity is dot product of normalized vectors.
|
184 |
+
# For simplicity, using dot product directly. Normalize if true cosine sim is needed.
|
185 |
+
scores = np.dot(self.embeddings, query_vector) # self.embeddings (N, D), query_vector (D,) -> scores (N,)
|
186 |
+
|
187 |
+
if scores.size == 0:
|
188 |
+
return ""
|
189 |
+
|
190 |
+
actual_top_k = min(top_k, len(self.documents_df), len(scores))
|
191 |
+
if actual_top_k <= 0: return "" # Ensure top_k is positive
|
192 |
+
|
193 |
+
# Get indices of top_k scores in descending order
|
194 |
+
top_indices = np.argsort(scores)[-actual_top_k:][::-1]
|
195 |
+
|
196 |
+
valid_top_indices = [idx for idx in top_indices if 0 <= idx < len(self.documents_df)]
|
197 |
+
if not valid_top_indices: return ""
|
198 |
+
|
199 |
+
# Retrieve the 'text' field from the original DataFrame
|
200 |
+
context_parts = [self.documents_df.iloc[i]['text'] for i in valid_top_indices if 'text' in self.documents_df.columns]
|
201 |
+
context = "\n\n---\n\n".join(context_parts)
|
202 |
+
logging.debug(f"Retrieved RAG context for query '{str(query)[:50]}...':\n{context[:200]}...")
|
203 |
+
return context
|
204 |
+
except Exception as e:
|
205 |
+
logging.error(f"Error during RAG retrieval (dot product/sorting): {e}", exc_info=True)
|
206 |
+
return ""
|
207 |
|
|
|
|
|
|
|
|
|
208 |
|
209 |
class EmployerBrandingAgent:
|
210 |
+
"""
|
211 |
+
An agent that uses Generative AI to provide insights on employer branding
|
212 |
+
based on provided DataFrames and RAG context.
|
213 |
+
"""
|
214 |
+
def __init__(self,
|
215 |
+
all_dataframes: dict,
|
216 |
+
rag_documents_df: pd.DataFrame, # For RAG system
|
217 |
+
llm_model_name: str,
|
218 |
+
embedding_model_name: str, # For RAG system
|
219 |
+
generation_config_dict: dict,
|
220 |
+
safety_settings_list_of_dicts: list,
|
221 |
+
# client_instance, # Using global client for simplicity now
|
222 |
+
force_sandbox: bool = False # Parameter from app.py, currently unused here
|
223 |
+
):
|
224 |
+
# self.client = client_instance # If client were passed
|
225 |
+
self.all_dataframes = {k: df.copy() for k, df in all_dataframes.items()} # Work with copies
|
226 |
+
self.schemas_representation = self._get_all_schemas_representation() # Sync method
|
227 |
+
|
228 |
+
self.chat_history = [] # Stores chat in API format: [{"role": "user/model", "parts": [{"text": "..."}]}]
|
229 |
+
# This will be set by app.py before calling process_query
|
230 |
|
231 |
+
self.llm_model_name = llm_model_name
|
232 |
+
self.generation_config_dict = generation_config_dict
|
233 |
+
self.safety_settings_list_of_dicts = safety_settings_list_of_dicts
|
234 |
+
|
235 |
+
self.embedding_model_name = embedding_model_name
|
236 |
+
self.rag_system = AdvancedRAGSystem(rag_documents_df, self.embedding_model_name)
|
237 |
+
# Note: self.rag_system.initialize_embeddings() must be called externally (e.g., in app.py)
|
238 |
+
|
239 |
+
self.force_sandbox = force_sandbox # Store if needed for tool use later
|
240 |
+
logging.info(f"EmployerBrandingAgent initialized. LLM: {self.llm_model_name}, Embedding: {self.embedding_model_name}. RAG system created.")
|
241 |
+
|
242 |
+
def _get_all_schemas_representation(self) -> str:
|
243 |
+
"""Generates a string representation of the schemas of all DataFrames."""
|
244 |
+
schema_descriptions = ["DataFrames available for analysis:"]
|
245 |
for key, df in self.all_dataframes.items():
|
246 |
+
df_name = f"df_{key}" # Consistent naming for the agent to refer to
|
247 |
+
columns = ", ".join(df.columns)
|
248 |
+
shape = df.shape
|
249 |
+
if df.empty:
|
250 |
+
schema = f"\n--- DataFrame: {df_name} ---\nStatus: Empty\nShape: {shape}\nColumns: {columns}"
|
251 |
+
else:
|
252 |
+
# Basic stats for numeric columns, first few unique for objects
|
253 |
+
sample_info_parts = []
|
254 |
+
for col in df.columns:
|
255 |
+
if pd.api.types.is_numeric_dtype(df[col]) and not df[col].empty:
|
256 |
+
sample_info_parts.append(f"{col} (numeric, e.g., mean: {df[col].mean():.2f})")
|
257 |
+
elif pd.api.types.is_datetime64_any_dtype(df[col]) and not df[col].empty:
|
258 |
+
sample_info_parts.append(f"{col} (datetime, e.g., min: {df[col].min()}, max: {df[col].max()})")
|
259 |
+
elif not df[col].empty:
|
260 |
+
unique_vals = df[col].unique()
|
261 |
+
display_unique = ', '.join(map(str, unique_vals[:3]))
|
262 |
+
if len(unique_vals) > 3: display_unique += ", ..."
|
263 |
+
sample_info_parts.append(f"{col} (object, e.g., {display_unique})")
|
264 |
+
else:
|
265 |
+
sample_info_parts.append(f"{col} (empty)")
|
266 |
+
|
267 |
+
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns & Sample Info:\n " + "\n ".join(sample_info_parts))
|
268 |
schema_descriptions.append(schema)
|
269 |
return "\n".join(schema_descriptions)
|
270 |
|
271 |
+
async def _build_prompt_for_current_turn(self, raw_user_query: str) -> str:
|
272 |
+
"""
|
273 |
+
Constructs the full prompt for the current turn, including system instructions,
|
274 |
+
DataFrame schemas, RAG context, and the user's query.
|
275 |
+
"""
|
276 |
+
# System instruction part
|
277 |
+
prompt_parts = [
|
278 |
+
"You are an expert Employer Branding Analyst and a helpful AI assistant. "
|
279 |
+
"Your goal is to provide insightful analysis based on the provided LinkedIn data. "
|
280 |
+
"When asked to generate Pandas code, ensure it is correct, runnable, and clearly explained. "
|
281 |
+
"When providing insights, be specific and refer to the data where possible."
|
282 |
+
]
|
283 |
+
|
284 |
+
# Schema information
|
285 |
+
prompt_parts.append("\n\n--- AVAILABLE DATA ---")
|
286 |
+
prompt_parts.append(self.schemas_representation)
|
287 |
+
|
288 |
+
# RAG context
|
289 |
+
if self.rag_system.embeddings is not None and self.rag_system.embeddings.size > 0 : # Check if RAG is initialized
|
290 |
+
logging.debug(f"Retrieving RAG context for query: {raw_user_query[:50]}...")
|
291 |
+
rag_context = await self.rag_system.retrieve_relevant_info(raw_user_query)
|
292 |
+
if rag_context:
|
293 |
+
prompt_parts.append("\n\n--- RELEVANT CONTEXTUAL INFORMATION (from documents) ---")
|
294 |
+
prompt_parts.append(rag_context)
|
295 |
+
else:
|
296 |
+
logging.debug("No relevant RAG context found.")
|
297 |
+
else:
|
298 |
+
logging.debug("RAG system not initialized or embeddings not available, skipping RAG context retrieval.")
|
299 |
+
|
300 |
+
|
301 |
+
# User's current query
|
302 |
+
prompt_parts.append("\n\n--- USER REQUEST ---")
|
303 |
+
prompt_parts.append(f"Based on all the information above, please respond to the following user query:\n{raw_user_query}")
|
304 |
+
|
305 |
+
final_prompt = "\n".join(prompt_parts)
|
306 |
+
logging.debug(f"Built prompt for current turn (first 300 chars): {final_prompt[:300]}")
|
307 |
+
return final_prompt
|
308 |
+
|
309 |
+
async def process_query(self, raw_user_query_this_turn: str) -> str:
|
310 |
+
"""
|
311 |
+
Processes the user's query, incorporating chat history, DataFrame schemas, and RAG.
|
312 |
+
The agent's self.chat_history is expected to be set by the calling application (app.py)
|
313 |
+
and should contain the history *before* the current raw_user_query_this_turn.
|
314 |
+
This method returns the AI's response string. app.py will then update the agent's
|
315 |
+
chat history with the raw_user_query_this_turn and this response.
|
316 |
+
"""
|
317 |
+
if not client:
|
318 |
+
logging.error("GenAI client not initialized. Cannot process query.")
|
319 |
+
return "Error: The AI Agent is not available due to a configuration issue with the AI service."
|
320 |
+
|
321 |
+
if not raw_user_query_this_turn.strip():
|
322 |
+
return "Please provide a query."
|
323 |
+
|
324 |
+
# 1. Prepare the augmented prompt for the *current* user query
|
325 |
+
# This prompt includes system instructions, schemas, RAG, and the current raw query.
|
326 |
+
augmented_current_user_prompt_text = await self._build_prompt_for_current_turn(raw_user_query_this_turn)
|
327 |
+
|
328 |
+
# 2. Construct the full list of contents for the API call
|
329 |
+
# self.chat_history should be in API format: [{"role": "user/model", "parts": [{"text": "..."}]}]
|
330 |
+
# It contains history *before* the current raw_user_query_this_turn.
|
331 |
+
api_call_contents = []
|
332 |
+
if self.chat_history: # Add previous turns if any
|
333 |
+
api_call_contents.extend(self.chat_history)
|
334 |
+
|
335 |
+
# Add the current user turn, using the fully augmented prompt as its content
|
336 |
+
api_call_contents.append({"role": "user", "parts": [{"text": augmented_current_user_prompt_text}]})
|
337 |
+
|
338 |
+
logging.debug(f"Sending to GenAI. Total turns in content: {len(api_call_contents)}")
|
339 |
+
if api_call_contents:
|
340 |
+
logging.debug(f"Last turn role: {api_call_contents[-1]['role']}, text start: {api_call_contents[-1]['parts'][0]['text'][:100]}")
|
341 |
+
|
342 |
+
|
343 |
+
# 3. Prepare API configuration
|
344 |
+
# Convert safety settings from list of dicts to list of SafetySetting objects if genai_types are available
|
345 |
+
api_safety_settings = []
|
346 |
+
if genai_types.SafetySetting:
|
347 |
+
for ss_dict in self.safety_settings_list_of_dicts:
|
348 |
+
try:
|
349 |
+
api_safety_settings.append(genai_types.SafetySetting(**ss_dict))
|
350 |
+
except TypeError: # Handles if HarmCategory/HarmBlockThreshold were strings due to import error
|
351 |
+
logging.warning(f"Could not create SafetySetting object from dict: {ss_dict}. Using dict directly.")
|
352 |
+
api_safety_settings.append(ss_dict) # Fallback to dict
|
353 |
+
else: # genai_types not available
|
354 |
+
api_safety_settings = self.safety_settings_list_of_dicts
|
355 |
+
|
356 |
+
|
357 |
+
api_generation_config = None
|
358 |
+
if genai_types.GenerateContentConfig:
|
359 |
+
try:
|
360 |
+
api_generation_config = genai_types.GenerateContentConfig(
|
361 |
+
**self.generation_config_dict,
|
362 |
+
safety_settings=api_safety_settings # This should be list of SafetySetting objects or dicts
|
363 |
+
)
|
364 |
+
except TypeError:
|
365 |
+
logging.warning("Could not create GenerateContentConfig object. Using dicts directly for config.")
|
366 |
+
# Fallback: if GenerateContentConfig fails, try to pass dicts (might not be supported by client.models.generate_content's 'config' param)
|
367 |
+
# The user's snippet uses config=types.GenerateContentConfig(...), so this object is important.
|
368 |
+
# If it fails, the call might fail.
|
369 |
+
api_generation_config = self.generation_config_dict # This is not ideal for the 'config' parameter.
|
370 |
+
# The 'config' parameter of client.models.generate_content expects a GenerateContentConfig object.
|
371 |
+
# If we can't create it, we should signal an error or try a different call structure if available.
|
372 |
+
# For now, proceed and let the API call potentially fail if config is malformed.
|
373 |
+
# A better fallback would be to construct the config parts individually if the main object fails.
|
374 |
+
# However, the user's snippet is clear: config=types.GenerateContentConfig(...)
|
375 |
+
# So, if genai_types.GenerateContentConfig is None, this will be an issue.
|
376 |
+
|
377 |
+
else: # genai_types.GenerateContentConfig is None (likely import error)
|
378 |
+
logging.error("genai_types.GenerateContentConfig not available. Cannot form API config.")
|
379 |
+
return "Error: AI Agent configuration problem (GenerateContentConfig type missing)."
|
380 |
+
|
381 |
+
|
382 |
+
# 4. Make the API call (synchronous SDK call wrapped in asyncio.to_thread)
|
383 |
+
try:
|
384 |
+
response = await asyncio.to_thread(
|
385 |
+
client.models.generate_content, # As per user's snippet
|
386 |
+
model=self.llm_model_name,
|
387 |
+
contents=api_call_contents,
|
388 |
+
config=api_generation_config # Pass the GenerateContentConfig object
|
389 |
)
|
390 |
+
# Extract text. User's snippet uses response.text
|
391 |
+
# Check for blocked content or other issues
|
392 |
+
if not response.candidates:
|
393 |
+
block_reason = response.prompt_feedback.block_reason if response.prompt_feedback else "Unknown"
|
394 |
+
logging.warning(f"AI response blocked or empty. Reason: {block_reason}")
|
395 |
+
# You might want to inspect response.prompt_feedback for block reasons
|
396 |
+
error_message = f"The AI's response was blocked. Reason: {block_reason}."
|
397 |
+
if response.prompt_feedback and response.prompt_feedback.block_reason_message:
|
398 |
+
error_message += f" Details: {response.prompt_feedback.block_reason_message}"
|
399 |
+
return error_message
|
400 |
|
401 |
+
answer = response.text.strip()
|
402 |
+
logging.info(f"Successfully received AI response (first 100 chars): {answer[:100]}")
|
|
|
403 |
|
404 |
+
except Exception as e:
|
405 |
+
logging.error(f"Error during GenAI call: {e}", exc_info=True)
|
406 |
+
# Check if it's a Google specific API error for more details
|
407 |
+
# from google.api_core import exceptions as google_exceptions
|
408 |
+
# if isinstance(e, google_exceptions.GoogleAPIError):
|
409 |
+
# answer = f"API Error: {e.message}"
|
410 |
+
# else:
|
411 |
+
answer = f"# Error during AI processing:\n{type(e).__name__}: {str(e)}"
|
412 |
+
|
413 |
+
return answer
|
414 |
|
415 |
+
def clear_chat_history(self): # This method is called by app.py
|
416 |
+
"""Clears the agent's internal chat history."""
|
417 |
self.chat_history = []
|
418 |
+
logging.info("EmployerBrandingAgent chat history cleared by request.")
|
419 |
+
|
420 |
+
# --- Module-level function for schema display in app.py ---
|
421 |
+
def get_all_schemas_representation(all_dataframes: dict) -> str:
|
422 |
+
"""
|
423 |
+
Generates a string representation of the schemas of all DataFrames,
|
424 |
+
intended for display in the Gradio UI.
|
425 |
+
This is a standalone function as it's imported directly by app.py.
|
426 |
+
"""
|
427 |
+
if not all_dataframes:
|
428 |
+
return "No DataFrames are currently loaded."
|
429 |
+
|
430 |
+
schema_descriptions = ["DataFrames currently available in the application state:"]
|
431 |
+
for key, df in all_dataframes.items():
|
432 |
+
df_name = f"df_{key}"
|
433 |
+
columns = ", ".join(df.columns)
|
434 |
+
shape = df.shape
|
435 |
+
if df.empty:
|
436 |
+
schema = f"\n--- DataFrame: {df_name} ---\nStatus: Empty\nShape: {shape}\nColumns: {columns}"
|
437 |
+
else:
|
438 |
+
# Provide a bit more detail for UI display
|
439 |
+
sample_data_str = df.head(2).to_markdown(index=False) # Use markdown for better UI rendering
|
440 |
+
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns: {columns}\n\n<details><summary>Sample Data (first 2 rows of {df_name}):</summary>\n\n{sample_data_str}\n\n</details>")
|
441 |
+
schema_descriptions.append(schema)
|
442 |
+
return "\n".join(schema_descriptions)
|
443 |
+
|