Spaces:
Running
Running
Update eb_agent_module.py
Browse files- eb_agent_module.py +81 -674
eb_agent_module.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# eb_agent_module.py
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
import os
|
@@ -7,695 +6,103 @@ import logging
|
|
7 |
import numpy as np
|
8 |
import textwrap
|
9 |
|
10 |
-
# --- Define Dummy Classes with unique names first ---
|
11 |
-
class _DummyGenAIClientModels: # Represents the dummy model service client
|
12 |
-
async def generate_content_async(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
|
13 |
-
print(f"Dummy _DummyGenAI.Client.models.generate_content_async called for model: {model}")
|
14 |
-
class DummyPart: text = "# Dummy response from _DummyGenAI async"
|
15 |
-
class DummyContent: parts = [DummyPart()]
|
16 |
-
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
|
17 |
-
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
|
18 |
-
return DummyResponse()
|
19 |
-
|
20 |
-
def generate_content(self, model=None, contents=None, generation_config=None, safety_settings=None, stream=False, tools=None, tool_config=None):
|
21 |
-
print(f"Dummy _DummyGenAI.Client.models.generate_content called for model: {model}")
|
22 |
-
class DummyPart: text = "# Dummy response from _DummyGenAI sync"
|
23 |
-
class DummyContent: parts = [DummyPart()]
|
24 |
-
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []; token_count = 0; index = 0
|
25 |
-
class DummyResponse: candidates = [DummyCandidate()]; text = DummyCandidate.content.parts[0].text; prompt_feedback = None
|
26 |
-
return DummyResponse()
|
27 |
-
|
28 |
-
def embed_content(self, model=None, contents=None, config=None): # Added dummy embed_content
|
29 |
-
task_type_from_config = "N/A"
|
30 |
-
if isinstance(config, dict) and config.get("task_type"):
|
31 |
-
task_type_from_config = config["task_type"]
|
32 |
-
elif hasattr(config, "task_type"): # Handle if config is an object with a task_type attribute
|
33 |
-
task_type_from_config = config.task_type
|
34 |
-
|
35 |
-
print(f"Dummy _DummyGenAI.Client.models.embed_content called for model: {model}, task_type (from config): {task_type_from_config}")
|
36 |
-
return {"embedding": [0.2] * 768} # Different values for dummy distinction
|
37 |
-
|
38 |
-
|
39 |
-
class _DummyGenAIClient: # Dummy Client
|
40 |
-
def __init__(self, client_options=None): # client_options is kept for dummy's internal logic if any
|
41 |
-
self.client_options = client_options
|
42 |
-
self.models = _DummyGenAIClientModels()
|
43 |
-
api_key_present_in_options = client_options and client_options.get("api_key")
|
44 |
-
print(f"Dummy _DummyGenAI.Client initialized {'with api_key in client_options' if api_key_present_in_options else '(global API key expected by dummy)'}.")
|
45 |
-
|
46 |
-
|
47 |
-
class _DummyGenAIGenerativeModel: # This dummy might be less used if client.models is preferred
|
48 |
-
def __init__(self, model_name_in, generation_config=None, safety_settings=None, system_instruction=None):
|
49 |
-
self.model_name = model_name_in
|
50 |
-
print(f"Dummy _DummyGenAIGenerativeModel initialized for {model_name_in}")
|
51 |
-
async def generate_content_async(self, contents, stream=False):
|
52 |
-
print(f"Dummy _DummyGenAIGenerativeModel.generate_content_async called for {self.model_name}")
|
53 |
-
class DummyPart: text = f"# Dummy response from dummy _DummyGenAIGenerativeModel ({self.model_name})"
|
54 |
-
class DummyContent: parts = [DummyPart()]
|
55 |
-
class DummyCandidate: content = DummyContent(); finish_reason = "_DUMMY_STOP"; safety_ratings = []
|
56 |
-
class DummyResponse: candidates = [DummyCandidate()]; prompt_feedback = None; text = DummyCandidate.content.parts[0].text
|
57 |
-
return DummyResponse()
|
58 |
-
# This embed_content on the dummy GenerativeModel might not be used if AdvancedRAGSystem uses client.models.embed_content
|
59 |
-
def embed_content(self, content, task_type=None, title=None):
|
60 |
-
print(f"Dummy _DummyGenAIGenerativeModel.embed_content called for model {self.model_name} (task: {task_type})")
|
61 |
-
return {"embedding": [0.1] * 768}
|
62 |
-
|
63 |
-
|
64 |
-
class _ActualDummyGenAI: # type: ignore
|
65 |
-
Client = _DummyGenAIClient
|
66 |
-
|
67 |
-
@staticmethod
|
68 |
-
def configure(api_key):
|
69 |
-
print(f"Dummy _ActualDummyGenAI.configure called with API key: {'SET' if api_key else 'NOT SET'}")
|
70 |
-
|
71 |
-
@staticmethod
|
72 |
-
def GenerativeModel(model_name, generation_config=None, safety_settings=None, system_instruction=None):
|
73 |
-
print(f"Dummy _ActualDummyGenAI.GenerativeModel called for model: {model_name}")
|
74 |
-
return _DummyGenAIGenerativeModel(model_name, generation_config, safety_settings, system_instruction)
|
75 |
-
|
76 |
-
class types:
|
77 |
-
@staticmethod
|
78 |
-
def GenerationConfig(**kwargs):
|
79 |
-
print(f"Dummy _ActualDummyGenAI.types.GenerationConfig created with: {kwargs}")
|
80 |
-
return dict(kwargs) # Real lib returns an object, but dict is fine for dummy
|
81 |
-
|
82 |
-
@staticmethod
|
83 |
-
def SafetySetting(category, threshold):
|
84 |
-
print(f"Dummy _ActualDummyGenAI.types.SafetySetting created: category={category}, threshold={threshold}")
|
85 |
-
# Real lib returns an object, dict is fine for dummy, but ensure it matches expected structure if used
|
86 |
-
return {"category": category, "threshold": threshold}
|
87 |
-
|
88 |
-
@staticmethod # Added dummy EmbedContentConfig
|
89 |
-
def EmbedContentConfig(task_type=None, output_dimensionality=None, title=None):
|
90 |
-
print(f"Dummy _ActualDummyGenAI.types.EmbedContentConfig created with task_type: {task_type}")
|
91 |
-
conf = {}
|
92 |
-
if task_type: conf["task_type"] = task_type
|
93 |
-
if output_dimensionality: conf["output_dimensionality"] = output_dimensionality
|
94 |
-
if title: conf["title"] = title
|
95 |
-
# The real library returns a types.EmbedContentRequest, which has these as attributes.
|
96 |
-
# For the dummy, returning a dict that the dummy embed_content can understand is okay.
|
97 |
-
# Or, make it return a simple object:
|
98 |
-
class DummyEmbedConfig:
|
99 |
-
def __init__(self):
|
100 |
-
self.task_type = task_type
|
101 |
-
self.output_dimensionality = output_dimensionality
|
102 |
-
self.title = title
|
103 |
-
return DummyEmbedConfig()
|
104 |
-
|
105 |
-
|
106 |
-
class HarmCategory: HARM_CATEGORY_UNSPECIFIED = "HARM_CATEGORY_UNSPECIFIED"; HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"; HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"; HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"; HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
|
107 |
-
class HarmBlockThreshold: BLOCK_NONE = "BLOCK_NONE"; BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"; BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"; BLOCK_ONLY_HIGH = "BLOCK_ONLY_HIGH"
|
108 |
-
class FinishReason: FINISH_REASON_UNSPECIFIED = "UNSPECIFIED"; STOP = "STOP"; MAX_TOKENS = "MAX_TOKENS"; SAFETY = "SAFETY"; RECITATION = "RECITATION"; OTHER = "OTHER"
|
109 |
-
class BlockedReason: BLOCKED_REASON_UNSPECIFIED = "BLOCKED_REASON_UNSPECIFIED"; SAFETY = "SAFETY"; OTHER = "OTHER"
|
110 |
-
class BlockedPromptException(Exception): pass
|
111 |
-
class StopCandidateException(Exception): pass
|
112 |
-
|
113 |
-
|
114 |
-
# --- Attempt to import the real library ---
|
115 |
-
_REAL_GENAI_LOADED = False
|
116 |
-
genai_types = None
|
117 |
-
|
118 |
try:
|
119 |
-
|
120 |
-
|
121 |
-
genai = real_genai # Use the real library
|
122 |
-
genai_types = genai.types
|
123 |
-
_REAL_GENAI_LOADED = True
|
124 |
-
logging.info("Successfully imported 'google.generativeai' and accessed 'genai.types'.")
|
125 |
except ImportError:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
except AttributeError: # If 'genai' imported but 'genai.types' is missing (less likely with modern SDK)
|
130 |
-
genai = _ActualDummyGenAI()
|
131 |
-
genai_types = genai.types # Fallback to dummy types
|
132 |
-
_REAL_GENAI_LOADED = False
|
133 |
-
logging.warning("'google.generativeai' imported, but 'genai.types' not found. Falling back to dummy implementations.")
|
134 |
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
138 |
-
LLM_MODEL_NAME = "gemini-1.5-flash" # Corrected to a generally available model like 1.5 flash
|
139 |
-
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004" # Corrected to a generally available embedding model
|
140 |
|
141 |
-
GENERATION_CONFIG_PARAMS = {
|
142 |
-
"temperature": 0.3, "top_p": 1.0, "top_k": 32, "max_output_tokens": 8192,
|
143 |
-
}
|
144 |
-
|
145 |
-
try:
|
146 |
-
DEFAULT_SAFETY_SETTINGS = [
|
147 |
-
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
148 |
-
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_HARASSMENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
149 |
-
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
150 |
-
genai_types.SafetySetting(category=genai_types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold=genai_types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE),
|
151 |
-
]
|
152 |
-
except Exception as e_safety:
|
153 |
-
logging.warning(f"Could not define DEFAULT_SAFETY_SETTINGS using 'genai_types' (real_loaded: {_REAL_GENAI_LOADED}): {e_safety}. Using placeholder list of dicts.")
|
154 |
-
DEFAULT_SAFETY_SETTINGS = [ # Simplified for dummy if types fail
|
155 |
-
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
156 |
-
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
|
157 |
-
]
|
158 |
-
|
159 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
|
160 |
-
|
161 |
-
if _REAL_GENAI_LOADED:
|
162 |
-
if GEMINI_API_KEY:
|
163 |
-
try:
|
164 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
165 |
-
logging.info(f"Gemini API key configured globally using REAL genai.configure.")
|
166 |
-
except Exception as e:
|
167 |
-
logging.error(f"Failed to configure REAL Gemini API globally: {e}", exc_info=True)
|
168 |
-
else:
|
169 |
-
logging.warning("REAL 'google.generativeai' loaded, but GEMINI_API_KEY not set. API calls might fail or use other auth.")
|
170 |
-
elif not _REAL_GENAI_LOADED: # This means we are in dummy mode
|
171 |
-
logging.info("Operating in DUMMY mode for 'google.generativeai'.")
|
172 |
-
if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) # Call dummy configure
|
173 |
-
|
174 |
-
|
175 |
-
# --- RAG Documents Definition (Example) ---
|
176 |
-
rag_documents_data = { 'Title': ["EB Practices", "Tech Talent"], 'Text': ["Stories about best practices...", "Projects showcasing tech talent..."] }
|
177 |
-
df_rag_documents = pd.DataFrame(rag_documents_data)
|
178 |
-
|
179 |
-
# --- Schema Representation ---
|
180 |
-
def get_schema_representation(df_name: str, df: pd.DataFrame) -> str:
|
181 |
-
if not isinstance(df, pd.DataFrame): return f"Schema for item '{df_name}': Not a DataFrame.\n"
|
182 |
-
if df.empty: return f"Schema for DataFrame 'df_{df_name}': Empty.\n"
|
183 |
-
return f"DataFrame 'df_{df_name}': Cols: {df.columns.tolist()}, Shape: {df.shape}\nSample:\n{textwrap.indent(df.head(1).to_string(), ' ')}\n"
|
184 |
-
|
185 |
-
def get_all_schemas_representation(dataframes_dict: dict) -> str:
|
186 |
-
if not dataframes_dict: return "No DataFrames provided.\n"
|
187 |
-
return "".join(get_schema_representation(name, df) for name, df in dataframes_dict.items())
|
188 |
-
|
189 |
-
# --- Advanced RAG System ---
|
190 |
class AdvancedRAGSystem:
|
191 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
192 |
-
self.
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
if self.real_client_available_for_rag:
|
205 |
-
try:
|
206 |
-
# REAL LIBRARY: genai.Client() does not take client_options.
|
207 |
-
# genai.configure() should have already set the API key.
|
208 |
-
rag_client = genai.Client() # NO client_options here for real client
|
209 |
-
self.embedding_service_client_models = rag_client.models # Access the 'models' service from the client instance
|
210 |
-
logging.info(f"RAG: REAL embedding service (genai.Client().models) initialized for '{self.embedding_model_name_for_api}'.")
|
211 |
-
self._precompute_embeddings() # Try to precompute
|
212 |
-
self.embeddings_generated = True # Mark as generated if precomputation started
|
213 |
-
except Exception as e:
|
214 |
-
logging.error(f"RAG: Error initializing REAL embedding service (genai.Client().models): {e}", exc_info=True)
|
215 |
-
self.embedding_service_client_models = None
|
216 |
-
self.real_client_available_for_rag = False # Cannot use real client if init fails
|
217 |
-
|
218 |
-
# Fallback to dummy if real client is not available or failed
|
219 |
-
if not self.real_client_available_for_rag:
|
220 |
-
logging.warning(f"RAG: Not using REAL embedding service. Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}, Real Client Init Failed: {self.embedding_service_client_models is None and _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)}.")
|
221 |
-
# Ensure we use the DUMMY genai instance if _REAL_GENAI_LOADED is false
|
222 |
-
dummy_genai_instance = _ActualDummyGenAI() if not _REAL_GENAI_LOADED else genai
|
223 |
-
self.embedding_service_client_models = dummy_genai_instance.Client().models # Gets dummy service
|
224 |
-
logging.info(f"RAG: Using DUMMY embedding service for '{self.embedding_model_name_for_api}'.")
|
225 |
-
self._precompute_embeddings() # Precompute with dummy
|
226 |
-
|
227 |
-
|
228 |
-
def _embed_fn(self, contents_to_embed: str, task_type: str) -> list[float]:
|
229 |
-
if not self.embedding_service_client_models:
|
230 |
-
logging.error(f"RAG _embed_fn: Embedding service (client.models) not available for model '{self.embedding_model_name_for_api}'.")
|
231 |
-
return [0.0] * 768 # Default embedding dimension
|
232 |
-
try:
|
233 |
-
if not contents_to_embed: return [0.0] * 768
|
234 |
-
|
235 |
-
# For the REAL library, embed_content takes `content` (not contents) and `task_type` directly.
|
236 |
-
# The `config` parameter is for more advanced settings not used here.
|
237 |
-
# The DUMMY `embed_content` was adapted to take a `config` object/dict.
|
238 |
-
|
239 |
-
if _REAL_GENAI_LOADED and self.real_client_available_for_rag: # Check if we are using the real service
|
240 |
-
response = self.embedding_service_client_models.embed_content(
|
241 |
-
model=self.embedding_model_name_for_api,
|
242 |
-
content=contents_to_embed, # Real API uses 'content'
|
243 |
-
task_type=task_type # Real API takes task_type directly
|
244 |
-
)
|
245 |
-
else: # DUMMY mode or real library failed, use dummy logic
|
246 |
-
# The dummy embed_content expects a config object/dict
|
247 |
-
embed_config_for_dummy = genai_types.EmbedContentConfig(task_type=task_type)
|
248 |
-
response = self.embedding_service_client_models.embed_content(
|
249 |
-
model=self.embedding_model_name_for_api,
|
250 |
-
contents=contents_to_embed, # Dummy API was expecting 'contents'
|
251 |
-
config=embed_config_for_dummy # Dummy API was expecting 'config'
|
252 |
-
)
|
253 |
-
return response["embedding"]
|
254 |
-
except Exception as e:
|
255 |
-
logging.error(f"Error in _embed_fn for task '{task_type}' using model '{self.embedding_model_name_for_api}' (real_genai_loaded: {_REAL_GENAI_LOADED}, real_client_for_rag: {self.real_client_available_for_rag}): {e}", exc_info=True)
|
256 |
-
return [0.0] * 768
|
257 |
-
|
258 |
-
def _precompute_embeddings(self):
|
259 |
-
if 'Embeddings' not in self.documents_df.columns: self.documents_df['Embeddings'] = pd.Series(dtype='object')
|
260 |
-
# Ensure text to embed is string, handle NaN gracefully
|
261 |
-
mask = (self.documents_df['Text'].astype(str).str.strip() != '') | \
|
262 |
-
(self.documents_df['Title'].astype(str).str.strip() != '')
|
263 |
-
|
264 |
-
if not mask.any():
|
265 |
-
logging.warning("No content with Text or Title found for RAG embeddings.")
|
266 |
-
return
|
267 |
-
|
268 |
-
logging.info(f"Attempting to precompute embeddings for {mask.sum()} documents.")
|
269 |
-
for index, row in self.documents_df[mask].iterrows():
|
270 |
-
text_to_embed = str(row.get('Text', '')) if pd.notna(row.get('Text')) and str(row.get('Text','')).strip() else str(row.get('Title', ''))
|
271 |
-
if not text_to_embed.strip(): # Double check if after selection it's still empty
|
272 |
-
logging.debug(f"Skipping row {index} due to empty text_to_embed after selection.")
|
273 |
-
self.documents_df.loc[index, 'Embeddings'] = [0.0] * 768 # Store default for empty
|
274 |
-
continue
|
275 |
-
|
276 |
-
# Corrected task type string to match API expectations (e.g., TASK_TYPE_RETRIEVAL_DOCUMENT)
|
277 |
-
# For google-generativeai, it's often just "RETRIEVAL_DOCUMENT"
|
278 |
-
task_type_for_embedding = "RETRIEVAL_DOCUMENT"
|
279 |
-
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_DOCUMENT'):
|
280 |
-
task_type_for_embedding = genai_types.TaskType.RETRIEVAL_DOCUMENT # Use enum if available
|
281 |
-
|
282 |
-
self.documents_df.loc[index, 'Embeddings'] = self._embed_fn(text_to_embed, task_type=task_type_for_embedding)
|
283 |
-
|
284 |
-
self.embeddings_generated = True # Mark as generated after attempting
|
285 |
-
logging.info(f"Finished RAG embedding precomputation for {mask.sum()} rows (embedding_service_client_models active: {self.embedding_service_client_models is not None}).")
|
286 |
-
|
287 |
-
|
288 |
-
def retrieve_relevant_info(self, query_text: str, top_k: int = 2) -> str:
|
289 |
-
if not self.embeddings_generated: # Check if embeddings were generated
|
290 |
-
logging.warning("RAG: Embeddings not generated, attempting to generate them now for retrieval.")
|
291 |
-
self._precompute_embeddings() # Attempt to generate if not already done
|
292 |
-
if not self.embeddings_generated: # If still not generated (e.g. no docs)
|
293 |
-
return "\n[RAG Context]\nEmbeddings could not be generated. No documents to search.\n"
|
294 |
-
|
295 |
-
if not self.real_client_available_for_rag or not self.embedding_service_client_models:
|
296 |
-
# If in full dummy mode and service is available, log the call for testing purposes
|
297 |
-
if not _REAL_GENAI_LOADED and self.embedding_service_client_models:
|
298 |
-
task_type_for_query = "RETRIEVAL_QUERY"
|
299 |
-
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_QUERY'):
|
300 |
-
task_type_for_query = genai_types.TaskType.RETRIEVAL_QUERY
|
301 |
-
self._embed_fn(query_text, task_type=task_type_for_query) # Call for dummy log
|
302 |
-
logging.warning(f"Skipping real RAG retrieval. Real client available for RAG: {self.real_client_available_for_rag}, Embedding service OK: {self.embedding_service_client_models is not None}")
|
303 |
-
return "\n[RAG Context]\nReal RAG retrieval skipped (client/service issue or dummy mode).\n"
|
304 |
-
|
305 |
-
try:
|
306 |
-
task_type_for_query = "RETRIEVAL_QUERY"
|
307 |
-
if hasattr(genai_types, 'TaskType') and hasattr(genai_types.TaskType, 'RETRIEVAL_QUERY'):
|
308 |
-
task_type_for_query = genai_types.TaskType.RETRIEVAL_QUERY
|
309 |
-
query_embedding_list = self._embed_fn(query_text, task_type=task_type_for_query)
|
310 |
-
query_embedding = np.array(query_embedding_list)
|
311 |
-
|
312 |
-
if not np.any(query_embedding): # Check if query embedding is all zeros (error)
|
313 |
-
logging.warning("RAG: Query embedding resulted in all zeros. Cannot retrieve.")
|
314 |
-
return "\n[RAG Context]\nFailed to generate a valid embedding for the query.\n"
|
315 |
-
|
316 |
-
valid_df = self.documents_df.dropna(subset=['Embeddings'])
|
317 |
-
# Filter out embeddings that are not lists/arrays or are empty or all zeros
|
318 |
-
valid_df = valid_df[valid_df['Embeddings'].apply(lambda x: isinstance(x, (list, np.ndarray)) and len(x) > 0 and np.any(x))]
|
319 |
-
if valid_df.empty: return "\n[RAG Context]\nNo valid document embeddings available after filtering.\n"
|
320 |
-
|
321 |
-
doc_embeddings = np.stack(valid_df['Embeddings'].apply(np.array).values)
|
322 |
-
if query_embedding.shape[0] != doc_embeddings.shape[1]:
|
323 |
-
logging.error(f"RAG: Embedding dimension mismatch. Query: {query_embedding.shape[0]}, Docs: {doc_embeddings.shape[1]}")
|
324 |
-
return "\n[RAG Context]\nEmbedding dimension mismatch between query and documents.\n"
|
325 |
-
|
326 |
-
dot_products = np.dot(doc_embeddings, query_embedding)
|
327 |
-
num_to_retrieve = min(top_k, len(valid_df))
|
328 |
-
if num_to_retrieve == 0: return "\n[RAG Context]\nNo relevant passages found (num_to_retrieve is 0).\n"
|
329 |
-
|
330 |
-
# Get indices of top_k largest dot products
|
331 |
-
idx = np.argsort(dot_products)[-num_to_retrieve:][::-1]
|
332 |
-
passages = "".join([f"\n[RAG Context from: '{valid_df.iloc[i]['Title']}']\n{valid_df.iloc[i]['Text']}\n" for i in idx if i < len(valid_df)])
|
333 |
-
return passages if passages else "\n[RAG Context]\nNo relevant passages found after search.\n"
|
334 |
-
except Exception as e:
|
335 |
-
logging.error(f"Error in RAG retrieve_relevant_info (real mode with embedding service): {e}", exc_info=True)
|
336 |
-
return f"\n[RAG Context]\nError during RAG retrieval (real mode): {type(e).__name__} - {e}\n"
|
337 |
-
|
338 |
-
# --- PandasLLM Class (Gemini-Powered using genai.Client) ---
|
339 |
-
class PandasLLM:
|
340 |
-
def __init__(self, llm_model_name: str,
|
341 |
-
generation_config_dict: dict,
|
342 |
-
safety_settings_list: list,
|
343 |
-
data_privacy=True, force_sandbox=True):
|
344 |
-
self.llm_model_name = llm_model_name
|
345 |
-
self.generation_config_dict = generation_config_dict
|
346 |
-
self.safety_settings_list = safety_settings_list
|
347 |
-
self.data_privacy = data_privacy
|
348 |
-
self.force_sandbox = force_sandbox
|
349 |
-
self.client_instance = None # Stores the genai.Client() instance
|
350 |
-
self.model_service_from_client = None # Stores client.models
|
351 |
-
|
352 |
-
# Determine if we can use the real client for LLM
|
353 |
-
self.use_real_llm_service = _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)
|
354 |
-
|
355 |
-
if self.use_real_llm_service:
|
356 |
-
try:
|
357 |
-
# REAL LIBRARY: genai.Client() does not take client_options.
|
358 |
-
# genai.configure() should have already set the API key.
|
359 |
-
self.client_instance = genai.Client() # NO client_options here
|
360 |
-
self.model_service_from_client = self.client_instance.models # Access 'models' service
|
361 |
-
logging.info(f"PandasLLM: Initialized with REAL genai.Client().models for '{self.llm_model_name}'.")
|
362 |
-
except Exception as e:
|
363 |
-
logging.error(f"Failed to initialize REAL PandasLLM with genai.Client().models: {e}", exc_info=True)
|
364 |
-
self.client_instance = None
|
365 |
-
self.model_service_from_client = None
|
366 |
-
self.use_real_llm_service = False # Fallback if init fails
|
367 |
-
|
368 |
-
# Fallback to dummy if real client is not available or failed
|
369 |
-
if not self.use_real_llm_service:
|
370 |
-
logging.warning(f"PandasLLM: Not using REAL genai.Client. RealGenAILoaded: {_REAL_GENAI_LOADED}, APIKeySet: {bool(GEMINI_API_KEY)}, Real Client Init Failed: {self.model_service_from_client is None and _REAL_GENAI_LOADED and bool(GEMINI_API_KEY)}.")
|
371 |
-
# Ensure we use the DUMMY genai instance if _REAL_GENAI_LOADED is false
|
372 |
-
dummy_genai_instance = _ActualDummyGenAI() if not _REAL_GENAI_LOADED else genai
|
373 |
-
self.client_instance = dummy_genai_instance.Client()
|
374 |
-
self.model_service_from_client = self.client_instance.models
|
375 |
-
logging.info("PandasLLM: Initialized with DUMMY genai.Client().models.")
|
376 |
-
|
377 |
-
|
378 |
-
async def _call_gemini_api_async(self, prompt_text: str, history: list = None) -> str:
|
379 |
-
# active_model_service will be self.model_service_from_client (either real or dummy)
|
380 |
-
active_model_service = self.model_service_from_client
|
381 |
-
|
382 |
-
is_actually_using_real_service = self.use_real_llm_service and active_model_service is not None and hasattr(active_model_service, 'generate_content_async') and not isinstance(active_model_service, _DummyGenAIClientModels)
|
383 |
-
|
384 |
-
|
385 |
-
if not active_model_service:
|
386 |
-
logging.error(f"PandasLLM: Model service (client.models) not available. Cannot call API.")
|
387 |
-
return "# Error: Gemini model service not available for API call."
|
388 |
-
|
389 |
-
gemini_history = []
|
390 |
-
if history:
|
391 |
-
for entry in history:
|
392 |
-
role_for_api = "model" if entry.get("role") == "assistant" else entry.get("role", "user")
|
393 |
-
text_content = entry.get("content", "")
|
394 |
-
gemini_history.append({"role": role_for_api, "parts": [{"text": text_content}]})
|
395 |
-
|
396 |
-
current_prompt_content = [{"role": "user", "parts": [{"text": prompt_text}]}]
|
397 |
-
contents_for_api = gemini_history + current_prompt_content
|
398 |
-
|
399 |
-
model_id_for_api = self.llm_model_name
|
400 |
-
if not model_id_for_api.startswith("models/"):
|
401 |
-
model_id_for_api = f"models/{model_id_for_api}"
|
402 |
-
|
403 |
-
api_generation_config = None
|
404 |
-
if self.generation_config_dict:
|
405 |
-
try:
|
406 |
-
# genai_types will point to real or dummy types
|
407 |
-
api_generation_config = genai_types.GenerationConfig(**self.generation_config_dict)
|
408 |
-
except Exception as e_cfg:
|
409 |
-
logging.error(f"Error creating GenerationConfig (real_loaded: {_REAL_GENAI_LOADED}, using_real_service_now: {is_actually_using_real_service}): {e_cfg}. Using dict fallback.")
|
410 |
-
api_generation_config = self.generation_config_dict # Fallback for safety
|
411 |
-
|
412 |
-
logging.info(f"\n--- Calling Gemini API (model: {model_id_for_api}, RealModeActive: {is_actually_using_real_service}) ---\nConfig: {type(api_generation_config)}\nSafety: {bool(self.safety_settings_list)}\nContent (last part text): {contents_for_api[-1]['parts'][0]['text'][:100]}...\n")
|
413 |
-
|
414 |
-
try:
|
415 |
-
response = await active_model_service.generate_content_async(
|
416 |
-
model=model_id_for_api,
|
417 |
-
contents=contents_for_api,
|
418 |
-
generation_config=api_generation_config,
|
419 |
-
safety_settings=self.safety_settings_list
|
420 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
return f"# Error: Prompt blocked by API. Reason: {block_reason_str}."
|
430 |
-
|
431 |
-
llm_output = ""
|
432 |
-
# The real API response often has .text directly for simple cases, or via candidates
|
433 |
-
if hasattr(response, 'text') and isinstance(response.text, str) and response.text:
|
434 |
-
llm_output = response.text
|
435 |
-
elif response.candidates:
|
436 |
-
candidate = response.candidates[0]
|
437 |
-
if candidate.content and candidate.content.parts:
|
438 |
-
llm_output = "".join(part.text for part in candidate.content.parts if hasattr(part, 'text'))
|
439 |
-
|
440 |
-
# Check finish reason if output is empty
|
441 |
-
if not llm_output and candidate.finish_reason:
|
442 |
-
finish_reason_val = candidate.finish_reason
|
443 |
-
# Convert enum to string if it's an enum
|
444 |
-
finish_reason_str = str(finish_reason_val.name if hasattr(finish_reason_val, 'name') and not isinstance(finish_reason_val, str) else finish_reason_val)
|
445 |
-
|
446 |
-
if finish_reason_str == "SAFETY" or (hasattr(genai_types, 'FinishReason') and finish_reason_val == genai_types.FinishReason.SAFETY) :
|
447 |
-
safety_messages = []
|
448 |
-
if hasattr(candidate, 'safety_ratings') and candidate.safety_ratings:
|
449 |
-
for rating in candidate.safety_ratings:
|
450 |
-
cat_name = rating.category.name if hasattr(rating.category, 'name') else str(rating.category)
|
451 |
-
prob_name = rating.probability.name if hasattr(rating.probability, 'name') else str(rating.probability)
|
452 |
-
safety_messages.append(f"Category: {cat_name}, Probability: {prob_name}")
|
453 |
-
logging.warning(f"Content generation stopped due to safety. Finish reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}")
|
454 |
-
return f"# Error: Content generation stopped by API due to safety. Finish Reason: {finish_reason_str}. Details: {'; '.join(safety_messages)}"
|
455 |
-
|
456 |
-
logging.warning(f"Empty response from LLM. Finish reason: {finish_reason_str}.")
|
457 |
-
return f"# Error: LLM returned an empty response. Finish reason: {finish_reason_str}."
|
458 |
-
else: # If no .text and no candidates, or candidates structure is unexpected
|
459 |
-
logging.error(f"Unexpected API response structure (no .text or valid candidates): {str(response)[:500]}")
|
460 |
-
return f"# Error: Unexpected API response structure: {str(response)[:200]}"
|
461 |
-
|
462 |
-
return llm_output
|
463 |
-
|
464 |
-
# Specific exceptions from the google.generativeai library
|
465 |
-
except (getattr(genai_types, 'BlockedPromptException', Exception)) as bpe: # Use getattr for safe access
|
466 |
-
if _REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException': # Check type name if real lib
|
467 |
-
logging.error(f"Prompt blocked (BlockedPromptException): {bpe}", exc_info=True)
|
468 |
-
return f"# Error: Prompt blocked. Details: {bpe}"
|
469 |
-
# If it's not the specific exception from the real library, or if in dummy mode, re-raise if it's a general Exception
|
470 |
-
if not (_REAL_GENAI_LOADED and type(bpe).__name__ == 'BlockedPromptException'): raise
|
471 |
-
except (getattr(genai_types, 'StopCandidateException', Exception)) as sce:
|
472 |
-
if _REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException':
|
473 |
-
logging.error(f"Candidate stopped (StopCandidateException): {sce}", exc_info=True)
|
474 |
-
return f"# Error: Content generation stopped. Details: {sce}"
|
475 |
-
if not (_REAL_GENAI_LOADED and type(sce).__name__ == 'StopCandidateException'): raise
|
476 |
-
except Exception as e:
|
477 |
-
logging.error(f"Error calling Gemini API (RealModeActive: {is_actually_using_real_service}): {e}", exc_info=True)
|
478 |
-
return f"# Error during API call: {type(e).__name__} - {str(e)[:100]}."
|
479 |
-
|
480 |
-
|
481 |
-
async def query(self, prompt_with_query_and_context: str, dataframes_dict: dict, history: list = None) -> str:
|
482 |
-
llm_response_text = await self._call_gemini_api_async(prompt_with_query_and_context, history)
|
483 |
-
|
484 |
-
if self.force_sandbox:
|
485 |
-
code_to_execute = ""
|
486 |
-
# Improved code extraction to handle potential leading/trailing newlines or spaces
|
487 |
-
if "```python" in llm_response_text:
|
488 |
-
try:
|
489 |
-
# Split by ```python, take the part after it
|
490 |
-
parts = llm_response_text.split("```python", 1)
|
491 |
-
if len(parts) > 1:
|
492 |
-
# From the second part, split by ```, take the part before it
|
493 |
-
code_block_parts = parts[1].split("```", 1)
|
494 |
-
code_to_execute = code_block_parts[0].strip() # .strip() to remove leading/trailing whitespace/newlines
|
495 |
-
except IndexError:
|
496 |
-
code_to_execute = "" # Should not happen with the check above but as a safeguard
|
497 |
-
|
498 |
-
if llm_response_text.startswith("# Error:") or not code_to_execute.strip():
|
499 |
-
logging.warning(f"LLM response is an error, or no valid Python code block found for sandbox. Raw LLM response: {llm_response_text[:200]}")
|
500 |
-
# If no code was extracted, but the response wasn't an error, it might be a textual answer.
|
501 |
-
if not code_to_execute.strip() and not llm_response_text.startswith("# Error:"):
|
502 |
-
if "```" not in llm_response_text and len(llm_response_text.strip()) > 0:
|
503 |
-
logging.info(f"LLM produced text output instead of Python code in sandbox mode. Passing through: {llm_response_text[:200]}")
|
504 |
-
return llm_response_text # Return original LLM response (error or non-code)
|
505 |
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
for name, df_instance in dataframes_dict.items():
|
513 |
-
if isinstance(df_instance, pd.DataFrame): exec_globals[f"df_{name}"] = df_instance
|
514 |
-
try:
|
515 |
-
exec(code_to_execute, exec_globals, {}) # Execute in the prepared scope
|
516 |
-
final_output_str = sys.stdout.getvalue()
|
517 |
-
if not final_output_str.strip(): # If code ran but produced no stdout
|
518 |
-
# Check if the code was just comments or whitespace
|
519 |
-
if not any(ln.strip() and not ln.strip().startswith("#") for ln in code_to_execute.splitlines()):
|
520 |
-
return "# LLM generated only comments or empty code. No output from sandbox."
|
521 |
-
return "# Code executed by sandbox, but no print() output. Ensure print() is used for results."
|
522 |
-
return final_output_str
|
523 |
-
except Exception as e:
|
524 |
-
logging.error(f"Sandbox Execution Error: {e}\nCode:\n{code_to_execute}", exc_info=True)
|
525 |
-
return f"# Sandbox Exec Error: {type(e).__name__}: {e}\n# Code:\n{textwrap.indent(code_to_execute, '# ')}"
|
526 |
-
finally: sys.stdout = old_stdout # Restore stdout
|
527 |
-
else: # Not forcing sandbox, return raw LLM response
|
528 |
-
return llm_response_text
|
529 |
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
generation_config_dict: dict,
|
534 |
-
safety_settings_list: list,
|
535 |
-
all_dataframes: dict,
|
536 |
-
rag_documents_df: pd.DataFrame,
|
537 |
-
embedding_model_name: str,
|
538 |
-
data_privacy=True,
|
539 |
-
force_sandbox=True):
|
540 |
-
|
541 |
-
self.pandas_llm = PandasLLM(llm_model_name, generation_config_dict, safety_settings_list, data_privacy, force_sandbox)
|
542 |
-
self.rag_system = AdvancedRAGSystem(rag_documents_df, embedding_model_name)
|
543 |
-
self.all_dataframes = all_dataframes if all_dataframes else {}
|
544 |
-
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
545 |
-
self.chat_history = []
|
546 |
-
logging.info(f"EmployerBrandingAgent Initialized (Real GenAI Loaded: {_REAL_GENAI_LOADED}, RAG Real Client: {self.rag_system.real_client_available_for_rag}, LLM Real Service: {self.pandas_llm.use_real_llm_service}).")
|
547 |
|
548 |
-
def _build_prompt(self, user_query: str, role="EB Analyst", task_hint=None, cot=True) -> str: # Simplified role for brevity in example
|
549 |
-
prompt = f"You are '{role}'. Your primary goal is to provide insights from the provided DataFrames and RAG context.\n"
|
550 |
-
if self.pandas_llm.data_privacy: prompt += "IMPORTANT PRIVACY NOTE: If dealing with Personally Identifiable Information (PII), you must summarize or aggregate it. Do not output raw PII.\n"
|
551 |
-
|
552 |
-
if self.pandas_llm.force_sandbox:
|
553 |
-
prompt += "RESPONSE FORMAT: Generate Python code to analyze the data and `print()` the textual insights or answers. Your entire response MUST be a single Python code block enclosed in ```python ... ```. Do NOT provide any text outside this block.\n"
|
554 |
-
prompt += "CODE GUIDELINES: Access DataFrames using their assigned 'df_name' (e.g., df_sales, df_employees). Comment your code clearly. Handle potential issues like ambiguity or missing data by printing informative messages.\n"
|
555 |
-
prompt += "CRITICAL: Your Python code's `print()` statements should output the final synthesized insights, not just raw DataFrames (unless specifically asked to show a DataFrame sample).\n"
|
556 |
-
else:
|
557 |
-
prompt += "RESPONSE FORMAT: Provide comprehensive textual insights. Explain your reasoning and steps clearly.\n"
|
558 |
-
|
559 |
-
prompt += f"--- AVAILABLE DATA SCHEMAS ---\n{self.schemas_representation if self.schemas_representation.strip() and self.schemas_representation.strip() != 'No DataFrames provided.' else 'No DataFrames are currently loaded or available.'}\n"
|
560 |
-
|
561 |
-
# Retrieve RAG context. The RAG system itself handles logging if it's skipped.
|
562 |
rag_context = self.rag_system.retrieve_relevant_info(user_query)
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
prompt += f"--- RAG (Retrieval Augmented Generation) CONTEXT (Real RAG active: {self.rag_system.real_client_available_for_rag and self.rag_system.embedding_service_client_models is not None}) ---\n"
|
568 |
-
if is_meaningful_rag:
|
569 |
-
prompt += f"{rag_context}\n"
|
570 |
-
else:
|
571 |
-
prompt += f"No specific relevant RAG context found for this query, or RAG system reported an issue. Details from RAG: {rag_context.strip()[:150]}...\n"
|
572 |
-
|
573 |
-
prompt += f"--- USER QUERY ---\n{user_query}\n"
|
574 |
-
if task_hint: prompt += f"--- ADDITIONAL GUIDANCE ---\n{task_hint}\n"
|
575 |
-
|
576 |
-
if cot: # Chain of Thought guidance
|
577 |
-
if self.pandas_llm.force_sandbox:
|
578 |
-
prompt += "--- PYTHON CODE THOUGHT PROCESS (Follow these steps internally before writing code) ---\n"
|
579 |
-
prompt += "1. Understand the Goal: What specific question does the user query ask? What insight is needed?\n"
|
580 |
-
prompt += "2. Identify Data Sources: Which DataFrame(s) are relevant? Is the RAG context useful?\n"
|
581 |
-
prompt += "3. Formulate a Plan: Outline the steps to take. E.g., filter df_X, aggregate df_Y, combine with RAG info.\n"
|
582 |
-
prompt += "4. Write Python Code: Implement the plan. Use pandas for DataFrame operations. Access RAG context as text.\n"
|
583 |
-
prompt += "5. CRITICAL - Print Results: Ensure `print()` statements clearly output the synthesized answer/insights. Do not just print raw data.\n"
|
584 |
-
prompt += "6. Review and Refine: Check code for correctness, clarity, and efficiency. Ensure it directly addresses the query.\n"
|
585 |
-
prompt += "7. Final Output: Ensure the entire response is ONLY the Python code block: ```python ... ```.\n"
|
586 |
-
else:
|
587 |
-
prompt += "--- TEXT RESPONSE THOUGHT PROCESS (Follow these steps internally) ---\n"
|
588 |
-
prompt += "1. Understand the Goal: What is the user asking for?\n"
|
589 |
-
prompt += "2. Identify Data Sources: Which DataFrames and RAG context sections are relevant?\n"
|
590 |
-
prompt += "3. Synthesize Insights: Combine information from DataFrames and RAG to form a coherent answer.\n"
|
591 |
-
prompt += "4. Structure Response: Organize the answer logically and explain the findings clearly.\n"
|
592 |
return prompt
|
593 |
|
594 |
-
async def process_query(self, user_query: str
|
595 |
-
# Keep a temporary copy of history for this call, so current user_query isn't in it
|
596 |
-
hist_for_llm = self.chat_history[:]
|
597 |
-
|
598 |
-
# Add current user query to persistent history *before* calling LLM
|
599 |
self.chat_history.append({"role": "user", "content": user_query})
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
def update_dataframes(self, new_dataframes: dict): # Changed from new_dfs
|
616 |
-
self.all_dataframes = new_dataframes if new_dataframes else {}
|
617 |
-
self.schemas_representation = get_all_schemas_representation(self.all_dataframes)
|
618 |
-
logging.info(f"Agent DataFrames updated. New schema: {self.schemas_representation[:200]}...")
|
619 |
-
|
620 |
-
def clear_chat_history(self):
|
621 |
-
self.chat_history = []
|
622 |
-
logging.info("Agent chat history cleared.")
|
623 |
-
|
624 |
-
# --- Example Usage (Conceptual) ---
|
625 |
-
async def main_test():
|
626 |
-
# Configure logging for the test
|
627 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(module)s - %(filename)s:%(lineno)d - %(message)s')
|
628 |
-
|
629 |
-
print(f"--- main_test() ---")
|
630 |
-
logging.info(f"Test starting with Real GenAI Loaded: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
|
631 |
-
|
632 |
-
# Example DataFrames for testing
|
633 |
-
sample_employee_data = {
|
634 |
-
'EmployeeID': [1, 2, 3, 4, 5],
|
635 |
-
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
|
636 |
-
'Department': ['HR', 'Tech', 'Tech', 'Sales', 'HR'],
|
637 |
-
'Projects': [['Onboarding Revamp'], ['AI Chatbot', 'Platform Upgrade'], ['AI Chatbot'], ['Client Outreach'], ['Benefits Portal']]
|
638 |
-
}
|
639 |
-
df_employees = pd.DataFrame(sample_employee_data)
|
640 |
-
|
641 |
-
sample_rag_docs_data = {
|
642 |
-
'Title': ["Company Culture Handbook", "Tech Team Achievements Q1", "Remote Work Policy"],
|
643 |
-
'Text': [
|
644 |
-
"Our company values collaboration, innovation, and inclusivity. We encourage cross-departmental projects.",
|
645 |
-
"The tech team successfully launched the AI Chatbot project, significantly improving customer engagement. The Platform Upgrade is on track.",
|
646 |
-
"We offer flexible remote work options. All employees are expected to maintain high levels of communication."
|
647 |
-
]
|
648 |
-
}
|
649 |
-
df_test_rag_documents = pd.DataFrame(sample_rag_docs_data)
|
650 |
-
|
651 |
-
agent = EmployerBrandingAgent(
|
652 |
-
llm_model_name=LLM_MODEL_NAME,
|
653 |
-
generation_config_dict=GENERATION_CONFIG_PARAMS,
|
654 |
-
safety_settings_list=DEFAULT_SAFETY_SETTINGS,
|
655 |
-
all_dataframes={'employees': df_employees}, # Provide a sample DataFrame
|
656 |
-
rag_documents_df=df_test_rag_documents, # Provide sample RAG documents
|
657 |
-
embedding_model_name=GEMINI_EMBEDDING_MODEL_NAME,
|
658 |
-
data_privacy=True,
|
659 |
-
force_sandbox=True # Set to True to test code generation, False for direct text
|
660 |
-
)
|
661 |
-
|
662 |
-
queries = [
|
663 |
-
"What are the key aspects of our company culture according to the handbook?",
|
664 |
-
"Which employees are working on the 'AI Chatbot' project? Summarize the project's impact.",
|
665 |
-
"How many employees are in the Tech department?"
|
666 |
-
]
|
667 |
-
|
668 |
-
for q_idx, q in enumerate(queries):
|
669 |
-
logging.info(f"\n--- Query {q_idx+1}: {q} ---")
|
670 |
-
resp = await agent.process_query(q)
|
671 |
-
logging.info(f"--- Agent Response for Query {q_idx+1} ---:\n{resp}\n---------------------\n")
|
672 |
-
# Add a small delay if using real API to avoid rate limits, though for flash models it's usually fine.
|
673 |
-
if _REAL_GENAI_LOADED and GEMINI_API_KEY: await asyncio.sleep(0.2)
|
674 |
-
|
675 |
-
if __name__ == "__main__":
|
676 |
-
print(f"Script starting... Real GenAI: {_REAL_GENAI_LOADED}, API Key Set: {bool(GEMINI_API_KEY)}")
|
677 |
-
# Setup basic logging if not already configured by a higher-level application
|
678 |
-
if not logging.getLogger().hasHandlers():
|
679 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
|
680 |
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
if "asyncio.run() cannot be called when another asyncio event loop is running" in str(e):
|
685 |
-
print("Skipping asyncio.run(main_test()) as an event loop is already running (e.g., in Jupyter).")
|
686 |
-
# If in Jupyter or similar, you might need to run like this:
|
687 |
-
# loop = asyncio.get_event_loop()
|
688 |
-
# if loop.is_running():
|
689 |
-
# print("Event loop is running, creating task for main_test()")
|
690 |
-
# asyncio.create_task(main_test())
|
691 |
-
# else:
|
692 |
-
# print("Event loop not running, using asyncio.run()")
|
693 |
-
# asyncio.run(main_test())
|
694 |
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
print(f"Main Test Exception: {e_main}")
|
700 |
-
logging.error("Exception in __main__ execution of main_test:", exc_info=True)
|
701 |
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import json
|
3 |
import os
|
|
|
6 |
import numpy as np
|
7 |
import textwrap
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
+
from google import genai
|
11 |
+
from google.genai import types as genai_types
|
|
|
|
|
|
|
|
|
12 |
except ImportError:
|
13 |
+
print("Google Generative AI library not found. Please install it: pip install google-generativeai")
|
14 |
+
# Dummy classes defined here for development/debugging
|
15 |
+
... # KEEP YOUR EXISTING DUMMY DEFINITIONS
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Configuration
|
18 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
19 |
+
LLM_MODEL_NAME = "gemini-2.0-flash"
|
20 |
+
GEMINI_EMBEDDING_MODEL_NAME = "gemini-embedding-exp-03-07"
|
21 |
|
22 |
+
client = genai.Client(api_key=GEMINI_API_KEY)
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
class AdvancedRAGSystem:
|
25 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
26 |
+
self.documents_df = documents_df
|
27 |
+
self.embedding_model_name = embedding_model_name
|
28 |
+
self.embeddings = self._embed_documents()
|
29 |
+
|
30 |
+
def _embed_documents(self):
|
31 |
+
embedded_docs = []
|
32 |
+
for text in self.documents_df['text']:
|
33 |
+
response = client.models.embed_content(
|
34 |
+
model=self.embedding_model_name,
|
35 |
+
contents=text,
|
36 |
+
config=genai_types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
+
embedded_docs.append(np.array(response.embeddings.values))
|
39 |
+
return np.vstack(embedded_docs)
|
40 |
+
|
41 |
+
def retrieve_relevant_info(self, query: str, top_k=3) -> str:
|
42 |
+
query_embedding = client.models.embed_content(
|
43 |
+
model=self.embedding_model_name,
|
44 |
+
contents=query,
|
45 |
+
config=genai_types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
|
46 |
+
)
|
47 |
+
query_vector = np.array(query_embedding.embeddings.values)
|
48 |
+
|
49 |
+
scores = np.dot(self.embeddings, query_vector)
|
50 |
+
top_indices = np.argsort(scores)[-top_k:][::-1]
|
51 |
+
context = "\n\n".join(self.documents_df.iloc[i]['text'] for i in top_indices)
|
52 |
+
return context
|
53 |
|
54 |
+
class EmployerBrandingAgent:
|
55 |
+
def __init__(self, all_dataframes: dict, rag_documents_df: pd.DataFrame):
|
56 |
+
self.all_dataframes = all_dataframes
|
57 |
+
self.schemas_representation = self._get_all_schemas_representation()
|
58 |
+
self.chat_history = []
|
59 |
+
self.rag_system = AdvancedRAGSystem(rag_documents_df, GEMINI_EMBEDDING_MODEL_NAME)
|
60 |
+
logging.info("EmployerBrandingAgent initialized with Gemini")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def _get_all_schemas_representation(self):
|
63 |
+
schema_descriptions = []
|
64 |
+
for key, df in self.all_dataframes.items():
|
65 |
+
schema = f"DataFrame: df_{key}\nColumns: {', '.join(df.columns)}\n"
|
66 |
+
schema_descriptions.append(schema)
|
67 |
+
return "\n".join(schema_descriptions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
def _build_prompt(self, user_query: str) -> str:
|
70 |
+
prompt = f"You are an expert Employer Branding Analyst. Analyze the query based on the following DataFrames.\n"
|
71 |
+
prompt += self.schemas_representation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
rag_context = self.rag_system.retrieve_relevant_info(user_query)
|
74 |
+
if rag_context:
|
75 |
+
prompt += f"\n\nAdditional Context:\n{rag_context}"
|
76 |
+
|
77 |
+
prompt += f"\n\nUser Query:\n{user_query}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
return prompt
|
79 |
|
80 |
+
async def process_query(self, user_query: str) -> str:
|
|
|
|
|
|
|
|
|
81 |
self.chat_history.append({"role": "user", "content": user_query})
|
82 |
+
prompt = self._build_prompt(user_query)
|
83 |
+
|
84 |
+
response = client.models.generate_content(
|
85 |
+
model=LLM_MODEL_NAME,
|
86 |
+
contents=[prompt],
|
87 |
+
config=genai_types.GenerateContentConfig(
|
88 |
+
safety_settings=[
|
89 |
+
genai_types.SafetySetting(
|
90 |
+
category=genai_types.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
|
91 |
+
threshold=genai_types.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE
|
92 |
+
)
|
93 |
+
]
|
94 |
+
)
|
95 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
answer = response.text.strip()
|
98 |
+
self.chat_history.append({"role": "assistant", "content": answer})
|
99 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
def update_dataframes(self, new_dataframes: dict):
|
102 |
+
self.all_dataframes = new_dataframes
|
103 |
+
self.schemas_representation = self._get_all_schemas_representation()
|
104 |
+
logging.info("EmployerBrandingAgent DataFrames updated.")
|
|
|
|
|
105 |
|
106 |
+
def clear_chat_history(self):
|
107 |
+
self.chat_history = []
|
108 |
+
logging.info("EmployerBrandingAgent chat history cleared.")
|