Spaces:
Running
Running
Update eb_agent_module.py
Browse files- eb_agent_module.py +472 -250
eb_agent_module.py
CHANGED
@@ -5,63 +5,68 @@ import asyncio
|
|
5 |
import logging
|
6 |
import numpy as np
|
7 |
import textwrap
|
|
|
8 |
|
9 |
try:
|
10 |
from google import generativeai as genai
|
11 |
-
from google.generativeai import types
|
12 |
-
from google.generativeai.types import HarmCategory, HarmBlockThreshold # Specific enums
|
13 |
except ImportError:
|
14 |
logging.error("Google Generative AI library not found. Please install it: pip install google-generativeai", exc_info=True)
|
15 |
-
# Define dummy classes/variables if import fails
|
16 |
-
# (though app.py already has EB_AGENT_AVAILABLE check)
|
17 |
class genai: Client = None # type: ignore
|
18 |
-
class
|
19 |
EmbedContentConfig = None
|
20 |
GenerateContentConfig = None
|
21 |
SafetySetting = None
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# --- Configuration Constants ---
|
34 |
-
# These are defined here because app.py imports them.
|
35 |
-
# User should ensure these are appropriate for their needs.
|
36 |
-
|
37 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
38 |
if not GEMINI_API_KEY:
|
39 |
logging.warning("GEMINI_API_KEY environment variable not set. EB Agent will not function.")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004" # Common embedding model; user had gemini-embedding-exp-03-07. Adjust if needed.
|
44 |
|
45 |
-
# Default Generation Config (app.py imports this as EB_AGENT_GEN_CONFIG)
|
46 |
GENERATION_CONFIG_PARAMS = {
|
47 |
"temperature": 0.7,
|
48 |
"top_p": 0.95,
|
49 |
"top_k": 40,
|
50 |
"max_output_tokens": 8192,
|
51 |
-
"candidate_count": 1,
|
52 |
-
# "stop_sequences": [...] # Optional
|
53 |
}
|
54 |
|
55 |
-
#
|
56 |
DEFAULT_SAFETY_SETTINGS = [
|
57 |
-
{"category": HarmCategory.HARM_CATEGORY_HATE_SPEECH, "
|
58 |
-
|
59 |
-
{"category": HarmCategory.
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
]
|
62 |
|
63 |
-
|
64 |
-
# In a real application, this would be loaded from a file or database.
|
65 |
df_rag_documents = pd.DataFrame({
|
66 |
'text': [
|
67 |
"Employer branding focuses on how an organization is perceived as an employer by potential and current employees.",
|
@@ -72,12 +77,9 @@ df_rag_documents = pd.DataFrame({
|
|
72 |
})
|
73 |
|
74 |
# --- Client Initialization ---
|
75 |
-
# This client will be used by the agent instances.
|
76 |
-
# It's initialized once when the module is loaded.
|
77 |
client = None
|
78 |
-
if GEMINI_API_KEY and genai.Client:
|
79 |
try:
|
80 |
-
# genai.configure(api_key=GEMINI_API_KEY) # Alternative: global configuration
|
81 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
82 |
logging.info("Google GenAI client initialized successfully.")
|
83 |
except Exception as e:
|
@@ -87,43 +89,35 @@ else:
|
|
87 |
|
88 |
|
89 |
class AdvancedRAGSystem:
|
90 |
-
"""
|
91 |
-
Handles Retrieval Augmented Generation by embedding documents and finding relevant context for queries.
|
92 |
-
"""
|
93 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
94 |
-
self.documents_df = documents_df.copy()
|
95 |
self.embedding_model_name = embedding_model_name
|
96 |
-
self.embeddings: np.ndarray | None = None
|
97 |
logging.info(f"AdvancedRAGSystem initialized with embedding model: {self.embedding_model_name}")
|
98 |
|
99 |
def _embed_single_document_sync(self, text: str) -> np.ndarray:
|
100 |
-
"""Synchronous helper to embed a single piece of text."""
|
101 |
if not client:
|
102 |
raise ConnectionError("GenAI client not initialized for RAG embedding.")
|
103 |
-
if not text or not isinstance(text, str):
|
104 |
-
logging.warning("Attempted to embed empty or non-string text. Returning zero vector.")
|
105 |
-
# Attempt to get model's embedding dimension, otherwise use a common default (e.g., 768)
|
106 |
-
# This is tricky without a live model call. For now, let's assume it will be filtered or handled.
|
107 |
-
# If we must return a vector, its dimensionality needs to be known.
|
108 |
-
# For simplicity, errors during embedding will be logged and might lead to skipping the doc.
|
109 |
raise ValueError("Cannot embed empty or non-string text.")
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
# Using client.models.embed_content as per user's provided snippets
|
112 |
response = client.models.embed_content(
|
113 |
-
model=self.embedding_model_name,
|
114 |
-
contents=text,
|
115 |
-
config=
|
116 |
)
|
117 |
-
# Assuming response.embeddings is the list of floats for a single content string, as per user's snippet.
|
118 |
return np.array(response.embeddings)
|
119 |
|
120 |
async def initialize_embeddings(self):
|
121 |
-
"""Asynchronously embeds all documents in the documents_df. Should be called once."""
|
122 |
if self.documents_df.empty:
|
123 |
logging.info("RAG documents DataFrame is empty. No embeddings to initialize.")
|
124 |
self.embeddings = np.array([])
|
125 |
return
|
126 |
-
|
127 |
if not client:
|
128 |
logging.error("GenAI client not available for RAG embedding initialization.")
|
129 |
self.embeddings = np.array([])
|
@@ -137,11 +131,10 @@ class AdvancedRAGSystem:
|
|
137 |
logging.warning(f"Skipping document at index {index} due to invalid text: {text_to_embed}")
|
138 |
continue
|
139 |
try:
|
140 |
-
# Wrap the synchronous SDK call in asyncio.to_thread
|
141 |
embedding_array = await asyncio.to_thread(self._embed_single_document_sync, text_to_embed)
|
142 |
embedded_docs_list.append(embedding_array)
|
143 |
except Exception as e:
|
144 |
-
logging.error(f"Error embedding document text (index {index}) '{str(text_to_embed)[:50]}...': {e}", exc_info=False)
|
145 |
|
146 |
if not embedded_docs_list:
|
147 |
self.embeddings = np.array([])
|
@@ -150,13 +143,20 @@ class AdvancedRAGSystem:
|
|
150 |
try:
|
151 |
self.embeddings = np.vstack(embedded_docs_list)
|
152 |
logging.info(f"Successfully embedded {len(embedded_docs_list)} documents for RAG. Embedding matrix shape: {self.embeddings.shape}")
|
153 |
-
except ValueError as ve:
|
154 |
logging.error(f"Error stacking embeddings: {ve}. Check individual embedding errors.", exc_info=True)
|
155 |
self.embeddings = np.array([])
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
async def retrieve_relevant_info(self, query: str, top_k: int = 3) -> str:
|
159 |
-
"""Retrieves relevant document snippets for a given query using vector similarity."""
|
160 |
if self.embeddings is None or self.embeddings.size == 0 or self.documents_df.empty:
|
161 |
logging.debug("RAG system not initialized or no documents/embeddings available for retrieval.")
|
162 |
return ""
|
@@ -176,257 +176,441 @@ class AdvancedRAGSystem:
|
|
176 |
if query_vector.ndim == 0 or query_vector.size == 0:
|
177 |
logging.warning(f"Query vector embedding failed or is empty for query: {str(query)[:50]}")
|
178 |
return ""
|
179 |
-
|
180 |
-
query_vector = query_vector.flatten()
|
181 |
-
|
182 |
try:
|
183 |
-
|
184 |
-
# For simplicity, using dot product directly. Normalize if true cosine sim is needed.
|
185 |
-
scores = np.dot(self.embeddings, query_vector) # self.embeddings (N, D), query_vector (D,) -> scores (N,)
|
186 |
|
187 |
-
if
|
188 |
return ""
|
189 |
|
190 |
-
|
191 |
-
if
|
192 |
-
|
193 |
-
|
194 |
-
top_indices = np.argsort(scores)[-actual_top_k:][::-1]
|
195 |
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
context_parts = [self.documents_df.iloc[i]['text'] for i in valid_top_indices if 'text' in self.documents_df.columns]
|
201 |
context = "\n\n---\n\n".join(context_parts)
|
202 |
logging.debug(f"Retrieved RAG context for query '{str(query)[:50]}...':\n{context[:200]}...")
|
203 |
return context
|
204 |
except Exception as e:
|
205 |
-
logging.error(f"Error during RAG retrieval (
|
206 |
return ""
|
207 |
|
208 |
|
209 |
class EmployerBrandingAgent:
|
210 |
-
"""
|
211 |
-
An agent that uses Generative AI to provide insights on employer branding
|
212 |
-
based on provided DataFrames and RAG context.
|
213 |
-
"""
|
214 |
def __init__(self,
|
215 |
all_dataframes: dict,
|
216 |
-
rag_documents_df: pd.DataFrame,
|
217 |
llm_model_name: str,
|
218 |
-
embedding_model_name: str,
|
219 |
generation_config_dict: dict,
|
220 |
safety_settings_list_of_dicts: list,
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
# self.client = client_instance # If client were passed
|
225 |
-
self.all_dataframes = {k: df.copy() for k, df in all_dataframes.items()} # Work with copies
|
226 |
-
self.schemas_representation = self._get_all_schemas_representation() # Sync method
|
227 |
|
228 |
-
self.chat_history = []
|
229 |
-
# This will be set by app.py before calling process_query
|
230 |
-
|
231 |
self.llm_model_name = llm_model_name
|
232 |
self.generation_config_dict = generation_config_dict
|
233 |
-
self.safety_settings_list_of_dicts = safety_settings_list_of_dicts
|
234 |
-
|
235 |
self.embedding_model_name = embedding_model_name
|
236 |
self.rag_system = AdvancedRAGSystem(rag_documents_df, self.embedding_model_name)
|
237 |
-
|
238 |
-
|
239 |
-
self.force_sandbox = force_sandbox # Store if needed for tool use later
|
240 |
logging.info(f"EmployerBrandingAgent initialized. LLM: {self.llm_model_name}, Embedding: {self.embedding_model_name}. RAG system created.")
|
241 |
|
242 |
-
def
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
for key, df in self.all_dataframes.items():
|
246 |
-
df_name = f"df_{key}" # Consistent naming for the agent to refer to
|
247 |
-
columns = ", ".join(df.columns)
|
248 |
-
shape = df.shape
|
249 |
if df.empty:
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
unique_vals = df[col].unique()
|
261 |
-
display_unique = ', '.join(map(str, unique_vals[:3]))
|
262 |
-
if len(unique_vals) > 3: display_unique += ", ..."
|
263 |
-
sample_info_parts.append(f"{col} (object, e.g., {display_unique})")
|
264 |
-
else:
|
265 |
-
sample_info_parts.append(f"{col} (empty)")
|
266 |
-
|
267 |
-
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns & Sample Info:\n " + "\n ".join(sample_info_parts))
|
268 |
-
schema_descriptions.append(schema)
|
269 |
return "\n".join(schema_descriptions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
async def _build_prompt_for_current_turn(self, raw_user_query: str) -> str:
|
272 |
-
"""
|
273 |
-
Constructs the full prompt for the current turn, including system instructions,
|
274 |
-
DataFrame schemas, RAG context, and the user's query.
|
275 |
-
"""
|
276 |
-
# System instruction part
|
277 |
prompt_parts = [
|
278 |
"You are an expert Employer Branding Analyst and a helpful AI assistant. "
|
279 |
"Your goal is to provide insightful analysis based on the provided LinkedIn data. "
|
280 |
"When asked to generate Pandas code, ensure it is correct, runnable, and clearly explained. "
|
281 |
-
"When providing insights, be specific and refer to the data where possible."
|
|
|
282 |
]
|
283 |
-
|
284 |
-
# Schema information
|
285 |
-
prompt_parts.append("\n\n--- AVAILABLE DATA ---")
|
286 |
prompt_parts.append(self.schemas_representation)
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
prompt_parts.append(
|
295 |
-
|
296 |
-
|
297 |
-
else:
|
298 |
-
logging.debug("RAG system not initialized or embeddings not available, skipping RAG context retrieval.")
|
299 |
-
|
300 |
|
301 |
-
# User's current query
|
302 |
prompt_parts.append("\n\n--- USER REQUEST ---")
|
303 |
prompt_parts.append(f"Based on all the information above, please respond to the following user query:\n{raw_user_query}")
|
304 |
-
|
305 |
final_prompt = "\n".join(prompt_parts)
|
306 |
logging.debug(f"Built prompt for current turn (first 300 chars): {final_prompt[:300]}")
|
307 |
return final_prompt
|
308 |
|
309 |
-
async def
|
310 |
-
""
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
-
if not raw_user_query_this_turn.strip():
|
322 |
-
return "Please provide a query."
|
323 |
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
augmented_current_user_prompt_text = await self._build_prompt_for_current_turn(raw_user_query_this_turn)
|
327 |
-
|
328 |
-
# 2. Construct the full list of contents for the API call
|
329 |
-
# self.chat_history should be in API format: [{"role": "user/model", "parts": [{"text": "..."}]}]
|
330 |
-
# It contains history *before* the current raw_user_query_this_turn.
|
331 |
-
api_call_contents = []
|
332 |
-
if self.chat_history: # Add previous turns if any
|
333 |
-
api_call_contents.extend(self.chat_history)
|
334 |
-
|
335 |
-
# Add the current user turn, using the fully augmented prompt as its content
|
336 |
api_call_contents.append({"role": "user", "parts": [{"text": augmented_current_user_prompt_text}]})
|
337 |
-
|
338 |
logging.debug(f"Sending to GenAI. Total turns in content: {len(api_call_contents)}")
|
339 |
-
if api_call_contents:
|
340 |
-
logging.debug(f"Last turn role: {api_call_contents[-1]['role']}, text start: {api_call_contents[-1]['parts'][0]['text'][:100]}")
|
341 |
-
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
api_safety_settings = []
|
346 |
-
if genai_types.SafetySetting:
|
347 |
for ss_dict in self.safety_settings_list_of_dicts:
|
348 |
try:
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
|
357 |
-
|
358 |
-
if
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
safety_settings=api_safety_settings # This should be list of SafetySetting objects or dicts
|
363 |
-
)
|
364 |
-
except TypeError:
|
365 |
-
logging.warning("Could not create GenerateContentConfig object. Using dicts directly for config.")
|
366 |
-
# Fallback: if GenerateContentConfig fails, try to pass dicts (might not be supported by client.models.generate_content's 'config' param)
|
367 |
-
# The user's snippet uses config=types.GenerateContentConfig(...), so this object is important.
|
368 |
-
# If it fails, the call might fail.
|
369 |
-
api_generation_config = self.generation_config_dict # This is not ideal for the 'config' parameter.
|
370 |
-
# The 'config' parameter of client.models.generate_content expects a GenerateContentConfig object.
|
371 |
-
# If we can't create it, we should signal an error or try a different call structure if available.
|
372 |
-
# For now, proceed and let the API call potentially fail if config is malformed.
|
373 |
-
# A better fallback would be to construct the config parts individually if the main object fails.
|
374 |
-
# However, the user's snippet is clear: config=types.GenerateContentConfig(...)
|
375 |
-
# So, if genai_types.GenerateContentConfig is None, this will be an issue.
|
376 |
-
|
377 |
-
else: # genai_types.GenerateContentConfig is None (likely import error)
|
378 |
-
logging.error("genai_types.GenerateContentConfig not available. Cannot form API config.")
|
379 |
-
return "Error: AI Agent configuration problem (GenerateContentConfig type missing)."
|
380 |
-
|
381 |
-
|
382 |
-
# 4. Make the API call (synchronous SDK call wrapped in asyncio.to_thread)
|
383 |
-
try:
|
384 |
-
response = await asyncio.to_thread(
|
385 |
-
client.models.generate_content, # As per user's snippet
|
386 |
-
model=self.llm_model_name,
|
387 |
-
contents=api_call_contents,
|
388 |
-
config=api_generation_config # Pass the GenerateContentConfig object
|
389 |
)
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
answer = response.text.strip()
|
402 |
-
logging.info(f"Successfully received AI response (first 100 chars): {answer[:100]}")
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
414 |
|
415 |
-
def
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
self.chat_history = []
|
418 |
logging.info("EmployerBrandingAgent chat history cleared by request.")
|
419 |
|
420 |
-
# --- Module-level function for schema display in app.py ---
|
421 |
def get_all_schemas_representation(all_dataframes: dict) -> str:
|
422 |
-
""
|
423 |
-
Generates a string representation of the schemas of all DataFrames,
|
424 |
-
intended for display in the Gradio UI.
|
425 |
-
This is a standalone function as it's imported directly by app.py.
|
426 |
-
"""
|
427 |
-
if not all_dataframes:
|
428 |
-
return "No DataFrames are currently loaded."
|
429 |
-
|
430 |
schema_descriptions = ["DataFrames currently available in the application state:"]
|
431 |
for key, df in all_dataframes.items():
|
432 |
df_name = f"df_{key}"
|
@@ -435,9 +619,47 @@ def get_all_schemas_representation(all_dataframes: dict) -> str:
|
|
435 |
if df.empty:
|
436 |
schema = f"\n--- DataFrame: {df_name} ---\nStatus: Empty\nShape: {shape}\nColumns: {columns}"
|
437 |
else:
|
438 |
-
|
439 |
-
sample_data_str = df.head(2).to_markdown(index=False) # Use markdown for better UI rendering
|
440 |
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns: {columns}\n\n<details><summary>Sample Data (first 2 rows of {df_name}):</summary>\n\n{sample_data_str}\n\n</details>")
|
441 |
schema_descriptions.append(schema)
|
442 |
return "\n".join(schema_descriptions)
|
443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import logging
|
6 |
import numpy as np
|
7 |
import textwrap
|
8 |
+
from datetime import datetime # Added for date calculations
|
9 |
|
10 |
try:
|
11 |
from google import generativeai as genai
|
12 |
+
from google.generativeai import types # For GenerateContentConfig, SafetySetting, HarmCategory, HarmBlockThreshold etc.
|
|
|
13 |
except ImportError:
|
14 |
logging.error("Google Generative AI library not found. Please install it: pip install google-generativeai", exc_info=True)
|
15 |
+
# Define dummy classes/variables if import fails
|
|
|
16 |
class genai: Client = None # type: ignore
|
17 |
+
class types: # type: ignore
|
18 |
EmbedContentConfig = None
|
19 |
GenerateContentConfig = None
|
20 |
SafetySetting = None
|
21 |
+
# Define HarmCategory and HarmBlockThreshold as inner classes or attributes for the dummy types
|
22 |
+
class HarmCategory: # type: ignore
|
23 |
+
HARM_CATEGORY_HATE_SPEECH = "HARM_CATEGORY_HATE_SPEECH"
|
24 |
+
HARM_CATEGORY_HARASSMENT = "HARM_CATEGORY_HARASSMENT"
|
25 |
+
HARM_CATEGORY_SEXUALLY_EXPLICIT = "HARM_CATEGORY_SEXUALLY_EXPLICIT"
|
26 |
+
HARM_CATEGORY_DANGEROUS_CONTENT = "HARM_CATEGORY_DANGEROUS_CONTENT"
|
27 |
+
class HarmBlockThreshold: # type: ignore
|
28 |
+
BLOCK_LOW_AND_ABOVE = "BLOCK_LOW_AND_ABOVE"
|
29 |
+
BLOCK_MEDIUM_AND_ABOVE = "BLOCK_MEDIUM_AND_ABOVE"
|
30 |
+
BLOCK_NONE = "BLOCK_NONE"
|
31 |
+
|
32 |
+
# --- Custom Exceptions ---
|
33 |
+
class ValidationError(Exception):
|
34 |
+
"""Custom validation error for agent inputs"""
|
35 |
+
pass
|
36 |
+
|
37 |
+
class RateLimitError(Exception):
|
38 |
+
"""Placeholder for rate limit errors."""
|
39 |
+
pass
|
40 |
|
41 |
# --- Configuration Constants ---
|
|
|
|
|
|
|
42 |
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', "")
|
43 |
if not GEMINI_API_KEY:
|
44 |
logging.warning("GEMINI_API_KEY environment variable not set. EB Agent will not function.")
|
45 |
|
46 |
+
LLM_MODEL_NAME = "gemini-1.5-flash-latest"
|
47 |
+
GEMINI_EMBEDDING_MODEL_NAME = "text-embedding-004"
|
|
|
48 |
|
|
|
49 |
GENERATION_CONFIG_PARAMS = {
|
50 |
"temperature": 0.7,
|
51 |
"top_p": 0.95,
|
52 |
"top_k": 40,
|
53 |
"max_output_tokens": 8192,
|
54 |
+
"candidate_count": 1,
|
|
|
55 |
}
|
56 |
|
57 |
+
# Updated to use types.HarmCategory and types.HarmBlockThreshold
|
58 |
DEFAULT_SAFETY_SETTINGS = [
|
59 |
+
{"category": types.HarmCategory.HARM_CATEGORY_HATE_SPEECH if types and hasattr(types, 'HarmCategory') else "HARM_CATEGORY_HATE_SPEECH",
|
60 |
+
"threshold": types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE if types and hasattr(types, 'HarmBlockThreshold') else "BLOCK_MEDIUM_AND_ABOVE"},
|
61 |
+
{"category": types.HarmCategory.HARM_CATEGORY_HARASSMENT if types and hasattr(types, 'HarmCategory') else "HARM_CATEGORY_HARASSMENT",
|
62 |
+
"threshold": types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE if types and hasattr(types, 'HarmBlockThreshold') else "BLOCK_MEDIUM_AND_ABOVE"},
|
63 |
+
{"category": types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT if types and hasattr(types, 'HarmCategory') else "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
64 |
+
"threshold": types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE if types and hasattr(types, 'HarmBlockThreshold') else "BLOCK_MEDIUM_AND_ABOVE"},
|
65 |
+
{"category": types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT if types and hasattr(types, 'HarmCategory') else "HARM_CATEGORY_DANGEROUS_CONTENT",
|
66 |
+
"threshold": types.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE if types and hasattr(types, 'HarmBlockThreshold') else "BLOCK_MEDIUM_AND_ABOVE"},
|
67 |
]
|
68 |
|
69 |
+
|
|
|
70 |
df_rag_documents = pd.DataFrame({
|
71 |
'text': [
|
72 |
"Employer branding focuses on how an organization is perceived as an employer by potential and current employees.",
|
|
|
77 |
})
|
78 |
|
79 |
# --- Client Initialization ---
|
|
|
|
|
80 |
client = None
|
81 |
+
if GEMINI_API_KEY and genai.Client:
|
82 |
try:
|
|
|
83 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
84 |
logging.info("Google GenAI client initialized successfully.")
|
85 |
except Exception as e:
|
|
|
89 |
|
90 |
|
91 |
class AdvancedRAGSystem:
|
|
|
|
|
|
|
92 |
def __init__(self, documents_df: pd.DataFrame, embedding_model_name: str):
|
93 |
+
self.documents_df = documents_df.copy()
|
94 |
self.embedding_model_name = embedding_model_name
|
95 |
+
self.embeddings: np.ndarray | None = None
|
96 |
logging.info(f"AdvancedRAGSystem initialized with embedding model: {self.embedding_model_name}")
|
97 |
|
98 |
def _embed_single_document_sync(self, text: str) -> np.ndarray:
|
|
|
99 |
if not client:
|
100 |
raise ConnectionError("GenAI client not initialized for RAG embedding.")
|
101 |
+
if not text or not isinstance(text, str):
|
|
|
|
|
|
|
|
|
|
|
102 |
raise ValueError("Cannot embed empty or non-string text.")
|
103 |
+
|
104 |
+
# Ensure types.EmbedContentConfig is available before using it
|
105 |
+
embed_config = None
|
106 |
+
if types and hasattr(types, 'EmbedContentConfig'):
|
107 |
+
embed_config = types.EmbedContentConfig(task_type="SEMANTIC_SIMILARITY")
|
108 |
|
|
|
109 |
response = client.models.embed_content(
|
110 |
+
model=self.embedding_model_name,
|
111 |
+
contents=text,
|
112 |
+
config=embed_config
|
113 |
)
|
|
|
114 |
return np.array(response.embeddings)
|
115 |
|
116 |
async def initialize_embeddings(self):
|
|
|
117 |
if self.documents_df.empty:
|
118 |
logging.info("RAG documents DataFrame is empty. No embeddings to initialize.")
|
119 |
self.embeddings = np.array([])
|
120 |
return
|
|
|
121 |
if not client:
|
122 |
logging.error("GenAI client not available for RAG embedding initialization.")
|
123 |
self.embeddings = np.array([])
|
|
|
131 |
logging.warning(f"Skipping document at index {index} due to invalid text: {text_to_embed}")
|
132 |
continue
|
133 |
try:
|
|
|
134 |
embedding_array = await asyncio.to_thread(self._embed_single_document_sync, text_to_embed)
|
135 |
embedded_docs_list.append(embedding_array)
|
136 |
except Exception as e:
|
137 |
+
logging.error(f"Error embedding document text (index {index}) '{str(text_to_embed)[:50]}...': {e}", exc_info=False)
|
138 |
|
139 |
if not embedded_docs_list:
|
140 |
self.embeddings = np.array([])
|
|
|
143 |
try:
|
144 |
self.embeddings = np.vstack(embedded_docs_list)
|
145 |
logging.info(f"Successfully embedded {len(embedded_docs_list)} documents for RAG. Embedding matrix shape: {self.embeddings.shape}")
|
146 |
+
except ValueError as ve:
|
147 |
logging.error(f"Error stacking embeddings: {ve}. Check individual embedding errors.", exc_info=True)
|
148 |
self.embeddings = np.array([])
|
149 |
|
150 |
+
def _calculate_cosine_similarity(self, embeddings_matrix: np.ndarray, query_vector: np.ndarray) -> np.ndarray:
|
151 |
+
"""Calculate normalized cosine similarity between a matrix of embeddings and a query vector."""
|
152 |
+
query_vector = query_vector.flatten()
|
153 |
+
norm_matrix = np.linalg.norm(embeddings_matrix, axis=1, keepdims=True)
|
154 |
+
normalized_embeddings_matrix = embeddings_matrix / (norm_matrix + 1e-8)
|
155 |
+
norm_query = np.linalg.norm(query_vector)
|
156 |
+
normalized_query_vector = query_vector / (norm_query + 1e-8)
|
157 |
+
return np.dot(normalized_embeddings_matrix, normalized_query_vector)
|
158 |
|
159 |
+
async def retrieve_relevant_info(self, query: str, top_k: int = 3, min_similarity: float = 0.3) -> str:
|
|
|
160 |
if self.embeddings is None or self.embeddings.size == 0 or self.documents_df.empty:
|
161 |
logging.debug("RAG system not initialized or no documents/embeddings available for retrieval.")
|
162 |
return ""
|
|
|
176 |
if query_vector.ndim == 0 or query_vector.size == 0:
|
177 |
logging.warning(f"Query vector embedding failed or is empty for query: {str(query)[:50]}")
|
178 |
return ""
|
179 |
+
|
|
|
|
|
180 |
try:
|
181 |
+
similarity_scores = self._calculate_cosine_similarity(self.embeddings, query_vector)
|
|
|
|
|
182 |
|
183 |
+
if similarity_scores.size == 0:
|
184 |
return ""
|
185 |
|
186 |
+
relevant_indices_after_threshold = np.where(similarity_scores >= min_similarity)[0]
|
187 |
+
if len(relevant_indices_after_threshold) == 0:
|
188 |
+
logging.debug(f"No documents met the minimum similarity threshold of {min_similarity} for query: {query[:50]}")
|
189 |
+
return ""
|
|
|
190 |
|
191 |
+
relevant_scores = similarity_scores[relevant_indices_after_threshold]
|
192 |
+
sorted_relevant_indices_local = np.argsort(relevant_scores)[::-1]
|
193 |
+
top_original_indices = relevant_indices_after_threshold[sorted_relevant_indices_local[:top_k]]
|
194 |
+
|
195 |
+
if len(top_original_indices) == 0: return ""
|
196 |
|
197 |
+
context_parts = [self.documents_df.iloc[i]['text'] for i in top_original_indices if 'text' in self.documents_df.columns]
|
|
|
198 |
context = "\n\n---\n\n".join(context_parts)
|
199 |
logging.debug(f"Retrieved RAG context for query '{str(query)[:50]}...':\n{context[:200]}...")
|
200 |
return context
|
201 |
except Exception as e:
|
202 |
+
logging.error(f"Error during RAG retrieval (similarity/sorting): {e}", exc_info=True)
|
203 |
return ""
|
204 |
|
205 |
|
206 |
class EmployerBrandingAgent:
|
|
|
|
|
|
|
|
|
207 |
def __init__(self,
|
208 |
all_dataframes: dict,
|
209 |
+
rag_documents_df: pd.DataFrame,
|
210 |
llm_model_name: str,
|
211 |
+
embedding_model_name: str,
|
212 |
generation_config_dict: dict,
|
213 |
safety_settings_list_of_dicts: list,
|
214 |
+
force_sandbox: bool = False):
|
215 |
+
self.all_dataframes = {k: df.copy() for k, df in all_dataframes.items()}
|
216 |
+
self.schemas_representation = self._get_enhanced_schemas_representation()
|
|
|
|
|
|
|
217 |
|
218 |
+
self.chat_history = []
|
|
|
|
|
219 |
self.llm_model_name = llm_model_name
|
220 |
self.generation_config_dict = generation_config_dict
|
221 |
+
self.safety_settings_list_of_dicts = safety_settings_list_of_dicts # These are dicts
|
|
|
222 |
self.embedding_model_name = embedding_model_name
|
223 |
self.rag_system = AdvancedRAGSystem(rag_documents_df, self.embedding_model_name)
|
224 |
+
self.force_sandbox = force_sandbox
|
|
|
|
|
225 |
logging.info(f"EmployerBrandingAgent initialized. LLM: {self.llm_model_name}, Embedding: {self.embedding_model_name}. RAG system created.")
|
226 |
|
227 |
+
def _get_date_range(self, df: pd.DataFrame) -> str:
|
228 |
+
for col in df.columns:
|
229 |
+
if pd.api.types.is_datetime64_any_dtype(df[col]):
|
230 |
+
try:
|
231 |
+
min_date = df[col].min()
|
232 |
+
max_date = df[col].max()
|
233 |
+
if pd.notna(min_date) and pd.notna(max_date):
|
234 |
+
return f"{min_date.strftime('%Y-%m-%d')} to {max_date.strftime('%Y-%m-%d')}"
|
235 |
+
except Exception: pass
|
236 |
+
return "N/A"
|
237 |
+
|
238 |
+
def _calculate_growth_rate(self, df: pd.DataFrame) -> str:
|
239 |
+
logging.debug("_calculate_growth_rate is a placeholder.") # Changed to debug
|
240 |
+
return "Growth rate calculation not implemented."
|
241 |
+
def _analyze_engagement_trends(self, df: pd.DataFrame) -> str:
|
242 |
+
logging.debug("_analyze_engagement_trends is a placeholder.")
|
243 |
+
return "Engagement trend analysis not implemented."
|
244 |
+
def _analyze_demographics(self, df: pd.DataFrame) -> str:
|
245 |
+
logging.debug("_analyze_demographics is a placeholder.")
|
246 |
+
return "Demographic analysis not implemented."
|
247 |
+
def _analyze_post_performance(self, df: pd.DataFrame) -> str:
|
248 |
+
logging.debug("_analyze_post_performance is a placeholder.")
|
249 |
+
return "Post performance analysis not implemented."
|
250 |
+
def _extract_content_themes(self, df: pd.DataFrame) -> str:
|
251 |
+
logging.debug("_extract_content_themes is a placeholder.")
|
252 |
+
return "Content theme extraction not implemented."
|
253 |
+
def _find_optimal_times(self, df: pd.DataFrame) -> str:
|
254 |
+
logging.debug("_find_optimal_times is a placeholder.")
|
255 |
+
return "Optimal posting time analysis not implemented."
|
256 |
+
|
257 |
+
def _calculate_key_metrics(self, df: pd.DataFrame, df_type: str) -> dict:
|
258 |
+
metrics = {}
|
259 |
+
if 'follower' in df_type.lower():
|
260 |
+
metrics.update({
|
261 |
+
'follower_growth_rate': self._calculate_growth_rate(df),
|
262 |
+
'engagement_trends': self._analyze_engagement_trends(df),
|
263 |
+
'demographic_distribution': self._analyze_demographics(df)
|
264 |
+
})
|
265 |
+
elif 'post' in df_type.lower():
|
266 |
+
metrics.update({
|
267 |
+
'post_performance': self._analyze_post_performance(df),
|
268 |
+
'content_themes': self._extract_content_themes(df),
|
269 |
+
'optimal_posting_times': self._find_optimal_times(df)
|
270 |
+
})
|
271 |
+
elif 'mention' in df_type.lower():
|
272 |
+
metrics['mention_volume_trend'] = "Mention volume trend not implemented."
|
273 |
+
metrics['mention_sentiment_overview'] = "Mention sentiment overview not implemented."
|
274 |
+
|
275 |
+
if not metrics:
|
276 |
+
logging.debug(f"No specific key metrics defined for df_type: {df_type}")
|
277 |
+
return {"info": "Standard metrics applicable."}
|
278 |
+
return metrics
|
279 |
+
|
280 |
+
def _calculate_data_freshness(self, df: pd.DataFrame) -> str:
|
281 |
+
for col in df.columns:
|
282 |
+
if pd.api.types.is_datetime64_any_dtype(df[col]):
|
283 |
+
try:
|
284 |
+
max_date = df[col].max()
|
285 |
+
if pd.notna(max_date):
|
286 |
+
days_diff = (datetime.now(max_date.tzinfo) - max_date).days # tz aware
|
287 |
+
return f"Data up to {max_date.strftime('%Y-%m-%d')} ({days_diff} days old)"
|
288 |
+
except Exception: pass
|
289 |
+
return "Freshness N/A (no clear date column)"
|
290 |
+
def _check_data_consistency(self, df: pd.DataFrame) -> str:
|
291 |
+
logging.debug("_check_data_consistency is a placeholder.")
|
292 |
+
return "Consistency checks not implemented."
|
293 |
+
def _identify_accuracy_issues(self, df: pd.DataFrame) -> str:
|
294 |
+
logging.debug("_identify_accuracy_issues is a placeholder.")
|
295 |
+
return "Accuracy issue identification not implemented."
|
296 |
+
|
297 |
+
def _assess_data_quality(self, df: pd.DataFrame) -> dict:
|
298 |
+
completeness = (1 - (df.isnull().sum().sum() / (len(df) * len(df.columns)))) if len(df) > 0 and len(df.columns) > 0 else 0
|
299 |
+
return {
|
300 |
+
'completeness_score': f"{completeness:.2%}",
|
301 |
+
'freshness_info': self._calculate_data_freshness(df),
|
302 |
+
'consistency_check': self._check_data_consistency(df),
|
303 |
+
'accuracy_flags_summary': self._identify_accuracy_issues(df),
|
304 |
+
'sample_size_notes': f"{len(df)} records. {'Adequate for basic analysis.' if len(df) >= 100 else 'Limited sample size; insights may be indicative.'}"
|
305 |
+
}
|
306 |
+
|
307 |
+
def _identify_patterns(self, df: pd.DataFrame, key: str) -> str:
|
308 |
+
logging.debug(f"_identify_patterns for {key} is a placeholder.")
|
309 |
+
return "Pattern identification not implemented."
|
310 |
+
|
311 |
+
def _format_df_analysis(self, df_key: str, analysis: dict) -> str:
|
312 |
+
formatted_parts = [f"\n--- DataFrame: df_{df_key} ---"]
|
313 |
+
formatted_parts.append(f" Shape: {analysis['shape']}")
|
314 |
+
formatted_parts.append(f" Date Range: {analysis['date_range']}")
|
315 |
+
formatted_parts.append(" Key Metrics:")
|
316 |
+
for metric, value in analysis['key_metrics'].items():
|
317 |
+
formatted_parts.append(f" - {metric.replace('_', ' ').title()}: {value}")
|
318 |
+
formatted_parts.append(" Data Quality Assessment:")
|
319 |
+
for aspect, value in analysis['data_quality'].items():
|
320 |
+
formatted_parts.append(f" - {aspect.replace('_', ' ').title()}: {value}")
|
321 |
+
formatted_parts.append(f" Notable Patterns: {analysis['notable_patterns']}")
|
322 |
+
return "\n".join(formatted_parts)
|
323 |
+
|
324 |
+
def _get_enhanced_schemas_representation(self) -> str:
|
325 |
+
schema_descriptions = ["=== DETAILED LINKEDIN DATA OVERVIEW ==="]
|
326 |
+
if not self.all_dataframes:
|
327 |
+
schema_descriptions.append("No dataframes available for analysis.")
|
328 |
+
return "\n".join(schema_descriptions)
|
329 |
for key, df in self.all_dataframes.items():
|
|
|
|
|
|
|
330 |
if df.empty:
|
331 |
+
schema_descriptions.append(f"\n--- DataFrame: df_{key} ---\nStatus: Empty. No analysis possible.")
|
332 |
+
continue
|
333 |
+
analysis = {
|
334 |
+
'shape': df.shape,
|
335 |
+
'date_range': self._get_date_range(df),
|
336 |
+
'key_metrics': self._calculate_key_metrics(df, key),
|
337 |
+
'data_quality': self._assess_data_quality(df),
|
338 |
+
'notable_patterns': self._identify_patterns(df, key)
|
339 |
+
}
|
340 |
+
schema_descriptions.append(self._format_df_analysis(key, analysis))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
return "\n".join(schema_descriptions)
|
342 |
+
|
343 |
+
def _extract_query_intent(self, query: str) -> str:
|
344 |
+
logging.debug("_extract_query_intent is a placeholder.")
|
345 |
+
if "compare" in query.lower() or "benchmark" in query.lower(): return "comparison"
|
346 |
+
if "trend" in query.lower(): return "trend_analysis"
|
347 |
+
return "general"
|
348 |
+
|
349 |
+
async def _get_business_context(self, intent: str) -> str:
|
350 |
+
logging.debug("_get_business_context is a placeholder.")
|
351 |
+
if intent == "comparison": return "Company is focused on outperforming competitors in tech hiring."
|
352 |
+
return "Company aims to improve overall employer brand perception."
|
353 |
+
|
354 |
+
async def _get_industry_benchmarks(self, intent: str) -> str:
|
355 |
+
logging.debug("_get_industry_benchmarks is a placeholder.")
|
356 |
+
if intent == "trend_analysis": return "Typical follower growth in this sector is 5-10% MoM."
|
357 |
+
return "Average engagement rate for similar companies is 2-3%."
|
358 |
+
|
359 |
+
async def _enhance_rag_context(self, query: str, base_context: str) -> str:
|
360 |
+
intent = self._extract_query_intent(query)
|
361 |
+
business_context_val = await self._get_business_context(intent)
|
362 |
+
benchmarks_val = await self._get_industry_benchmarks(intent)
|
363 |
+
enhanced_context = f"""{base_context}
|
364 |
+
--- ADDITIONAL CONTEXT FOR YOUR ANALYSIS ---
|
365 |
+
Business Focus: {business_context_val}
|
366 |
+
Relevant Benchmarks: {benchmarks_val}"""
|
367 |
+
return enhanced_context
|
368 |
|
369 |
async def _build_prompt_for_current_turn(self, raw_user_query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
370 |
prompt_parts = [
|
371 |
"You are an expert Employer Branding Analyst and a helpful AI assistant. "
|
372 |
"Your goal is to provide insightful analysis based on the provided LinkedIn data. "
|
373 |
"When asked to generate Pandas code, ensure it is correct, runnable, and clearly explained. "
|
374 |
+
"When providing insights, be specific and refer to the data where possible. "
|
375 |
+
"Use the detailed data overview and any contextual information provided."
|
376 |
]
|
377 |
+
prompt_parts.append("\n\n--- DETAILED DATA OVERVIEW ---")
|
|
|
|
|
378 |
prompt_parts.append(self.schemas_representation)
|
379 |
|
380 |
+
if self.rag_system.embeddings is not None and self.rag_system.embeddings.size > 0:
|
381 |
+
logging.debug(f"Retrieving base RAG context for query: {raw_user_query[:50]}...")
|
382 |
+
base_rag_context = await self.rag_system.retrieve_relevant_info(raw_user_query)
|
383 |
+
if base_rag_context:
|
384 |
+
logging.debug(f"Enhancing RAG context for query: {raw_user_query[:50]}...")
|
385 |
+
enhanced_rag_context = await self._enhance_rag_context(raw_user_query, base_rag_context)
|
386 |
+
prompt_parts.append("\n\n--- RELEVANT CONTEXTUAL INFORMATION (from documents & business knowledge) ---")
|
387 |
+
prompt_parts.append(enhanced_rag_context)
|
388 |
+
else: logging.debug("No base RAG context found.")
|
389 |
+
else: logging.debug("RAG system not initialized or embeddings not available, skipping RAG context retrieval.")
|
|
|
|
|
390 |
|
|
|
391 |
prompt_parts.append("\n\n--- USER REQUEST ---")
|
392 |
prompt_parts.append(f"Based on all the information above, please respond to the following user query:\n{raw_user_query}")
|
|
|
393 |
final_prompt = "\n".join(prompt_parts)
|
394 |
logging.debug(f"Built prompt for current turn (first 300 chars): {final_prompt[:300]}")
|
395 |
return final_prompt
|
396 |
|
397 |
+
async def _process_structured_query(self, prompt: str) -> dict:
|
398 |
+
logging.debug("_process_structured_query is a placeholder. Returning dummy structure.")
|
399 |
+
return {
|
400 |
+
"Key Findings": ["Placeholder finding 1", "Placeholder finding 2"],
|
401 |
+
"Performance Metrics": ["Placeholder metric performance"],
|
402 |
+
"Actionable Recommendations": {
|
403 |
+
"Immediate Actions (0-30 days)": ["Placeholder immediate action"],
|
404 |
+
"Short-term Strategy (1-3 months)": ["Placeholder short-term strategy"],
|
405 |
+
"Long-term Vision (3-12 months)": ["Placeholder long-term vision"]
|
406 |
+
},
|
407 |
+
"Risk Assessment": ["Placeholder risk"],
|
408 |
+
"Success Metrics to Track": ["Placeholder KPI"]
|
409 |
+
}
|
410 |
+
|
411 |
+
async def _generate_hr_insights(self, query: str, context: str) -> str:
|
412 |
+
insight_prompt = f"""
|
413 |
+
As an expert HR analytics consultant, analyze the following LinkedIn employer branding data:
|
414 |
+
{context}
|
415 |
+
User Query: {query}
|
416 |
+
Please provide insights in this structured format:
|
417 |
+
## Key Findings
|
418 |
+
- [3-5 bullet points of main discoveries]
|
419 |
+
## Performance Metrics
|
420 |
+
- Current performance vs industry benchmarks
|
421 |
+
- Trend analysis (improving/declining/stable)
|
422 |
+
## Actionable Recommendations
|
423 |
+
1. **Immediate Actions (0-30 days)**
|
424 |
+
- [Specific, measurable actions]
|
425 |
+
2. **Short-term Strategy (1-3 months)**
|
426 |
+
- [Strategic initiatives]
|
427 |
+
3. **Long-term Vision (3-12 months)**
|
428 |
+
- [Comprehensive improvements]
|
429 |
+
## Risk Assessment
|
430 |
+
- Potential challenges or red flags
|
431 |
+
- Mitigation strategies
|
432 |
+
## Success Metrics to Track
|
433 |
+
- KPIs to monitor progress
|
434 |
+
- Reporting frequency recommendations
|
435 |
+
"""
|
436 |
+
if not client: return "Error: AI client not configured for generating HR insights."
|
437 |
+
api_call_contents = [{"role": "user", "parts": [{"text": insight_prompt}]}]
|
438 |
+
|
439 |
+
# Construct SafetySetting objects if types.SafetySetting is available
|
440 |
+
api_safety_settings_objects = []
|
441 |
+
if types and hasattr(types, 'SafetySetting'):
|
442 |
+
for ss_dict in self.safety_settings_list_of_dicts:
|
443 |
+
try:
|
444 |
+
# Use types.HarmCategory and types.HarmBlockThreshold directly
|
445 |
+
category = getattr(types.HarmCategory, ss_dict['category'].split('.')[-1] if isinstance(ss_dict['category'], str) else ss_dict['category'].name, types.HarmCategory.HARM_CATEGORY_UNSPECIFIED)
|
446 |
+
threshold = getattr(types.HarmBlockThreshold, ss_dict['threshold'].split('.')[-1] if isinstance(ss_dict['threshold'], str) else ss_dict['threshold'].name, types.HarmBlockThreshold.BLOCK_NONE)
|
447 |
+
api_safety_settings_objects.append(types.SafetySetting(category=category, threshold=threshold))
|
448 |
+
except Exception as e_ss:
|
449 |
+
logging.warning(f"Could not create SafetySetting object from {ss_dict}: {e_ss}. Using dict.")
|
450 |
+
api_safety_settings_objects.append(ss_dict) # Fallback to dict if creation fails
|
451 |
+
else: # Fallback if types.SafetySetting is not available
|
452 |
+
api_safety_settings_objects = self.safety_settings_list_of_dicts
|
453 |
+
|
454 |
+
api_generation_config_obj = None
|
455 |
+
if types and hasattr(types, 'GenerateContentConfig'):
|
456 |
+
api_generation_config_obj = types.GenerateContentConfig(
|
457 |
+
**self.generation_config_dict,
|
458 |
+
safety_settings=api_safety_settings_objects
|
459 |
+
)
|
460 |
+
else: # Fallback if types.GenerateContentConfig is not available
|
461 |
+
config_dict_for_api = {**self.generation_config_dict, "safety_settings": api_safety_settings_objects}
|
462 |
+
api_generation_config_obj = config_dict_for_api
|
463 |
|
|
|
|
|
464 |
|
465 |
+
try:
|
466 |
+
response = await asyncio.to_thread(
|
467 |
+
client.models.generate_content,
|
468 |
+
model=self.llm_model_name,
|
469 |
+
contents=api_call_contents,
|
470 |
+
config=api_generation_config_obj
|
471 |
+
)
|
472 |
+
if not response.candidates: return "HR insights generation failed: No response from AI."
|
473 |
+
return response.text.strip()
|
474 |
+
except Exception as e:
|
475 |
+
logging.error(f"Error generating HR insights: {e}", exc_info=True)
|
476 |
+
return f"Error generating HR insights: {str(e)}"
|
477 |
+
|
478 |
+
def _validate_query(self, query: str) -> bool:
|
479 |
+
if not query or len(query.strip()) < 3:
|
480 |
+
logging.warning(f"Query too short: '{query}'")
|
481 |
+
return False
|
482 |
+
hr_keywords = ['employee', 'talent', 'hiring', 'culture', 'brand', 'engagement', 'retention', 'follower', 'post', 'mention', 'linkedin']
|
483 |
+
if not any(keyword in query.lower() for keyword in hr_keywords):
|
484 |
+
logging.warning(f"Query may not be HR/LinkedIn-relevant: {query[:50]}")
|
485 |
+
return True
|
486 |
+
|
487 |
+
def _get_query_help_message(self) -> str:
|
488 |
+
return ("I'm here to help with Employer Branding analysis on LinkedIn data. "
|
489 |
+
"Please ask specific questions about your followers, posts, or mentions. "
|
490 |
+
"For example: 'What are the top industries of my followers?' or 'Analyze the engagement trend of my recent posts.'")
|
491 |
+
|
492 |
+
async def _check_system_readiness(self) -> dict:
|
493 |
+
logging.debug("_check_system_readiness is a placeholder.")
|
494 |
+
if not client: return {'ready': False, 'reason': 'AI Client not initialized.'}
|
495 |
+
if self.rag_system.embeddings is None:
|
496 |
+
logging.warning("RAG embeddings not yet initialized. Proceeding, but RAG context will be unavailable.")
|
497 |
+
return {'ready': True, 'reason': 'System appears ready.'}
|
498 |
+
|
499 |
+
def _get_fallback_response(self, query: str) -> str:
|
500 |
+
logging.error(f"Executing fallback response for query: {query[:50]}")
|
501 |
+
return "I encountered an unexpected issue while processing your request. Please try rephrasing your query or try again later."
|
502 |
+
|
503 |
+
async def _core_query_processing(self, raw_user_query_this_turn: str) -> str:
|
504 |
augmented_current_user_prompt_text = await self._build_prompt_for_current_turn(raw_user_query_this_turn)
|
505 |
+
api_call_contents = list(self.chat_history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
api_call_contents.append({"role": "user", "parts": [{"text": augmented_current_user_prompt_text}]})
|
|
|
507 |
logging.debug(f"Sending to GenAI. Total turns in content: {len(api_call_contents)}")
|
|
|
|
|
|
|
508 |
|
509 |
+
api_safety_settings_objects = []
|
510 |
+
if types and hasattr(types, 'SafetySetting'):
|
|
|
|
|
511 |
for ss_dict in self.safety_settings_list_of_dicts:
|
512 |
try:
|
513 |
+
category_enum_val = ss_dict['category']
|
514 |
+
threshold_enum_val = ss_dict['threshold']
|
515 |
+
# If they are already enum members, use them directly
|
516 |
+
if not isinstance(category_enum_val, str): # Assumes it's an enum member
|
517 |
+
category = category_enum_val
|
518 |
+
else: # If string, try to get from types.HarmCategory
|
519 |
+
category = getattr(types.HarmCategory, category_enum_val.split('.')[-1], types.HarmCategory.HARM_CATEGORY_UNSPECIFIED)
|
520 |
+
|
521 |
+
if not isinstance(threshold_enum_val, str): # Assumes it's an enum member
|
522 |
+
threshold = threshold_enum_val
|
523 |
+
else: # If string, try to get from types.HarmBlockThreshold
|
524 |
+
threshold = getattr(types.HarmBlockThreshold, threshold_enum_val.split('.')[-1], types.HarmBlockThreshold.BLOCK_NONE)
|
525 |
+
|
526 |
+
api_safety_settings_objects.append(types.SafetySetting(category=category, threshold=threshold))
|
527 |
+
except Exception as e_ss_core:
|
528 |
+
logging.warning(f"Could not create SafetySetting object from {ss_dict} in core: {e_ss_core}. Using dict.")
|
529 |
+
api_safety_settings_objects.append(ss_dict) # Fallback
|
530 |
+
else:
|
531 |
+
api_safety_settings_objects = self.safety_settings_list_of_dicts
|
532 |
|
533 |
|
534 |
+
api_generation_config_obj = None
|
535 |
+
if types and hasattr(types, 'GenerateContentConfig'):
|
536 |
+
api_generation_config_obj = types.GenerateContentConfig(
|
537 |
+
**self.generation_config_dict,
|
538 |
+
safety_settings=api_safety_settings_objects
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
)
|
540 |
+
else:
|
541 |
+
logging.error("GenerateContentConfig type not available. API call might fail.")
|
542 |
+
config_dict_for_api = {**self.generation_config_dict, "safety_settings": api_safety_settings_objects}
|
543 |
+
api_generation_config_obj = config_dict_for_api
|
544 |
+
|
545 |
+
response = await asyncio.to_thread(
|
546 |
+
client.models.generate_content,
|
547 |
+
model=self.llm_model_name,
|
548 |
+
contents=api_call_contents,
|
549 |
+
config=api_generation_config_obj
|
550 |
+
)
|
|
|
|
|
551 |
|
552 |
+
if not response.candidates:
|
553 |
+
block_reason = response.prompt_feedback.block_reason if response.prompt_feedback else "Unknown"
|
554 |
+
block_message = response.prompt_feedback.block_reason_message if response.prompt_feedback else ""
|
555 |
+
logging.warning(f"AI response blocked or empty. Reason: {block_reason}, Msg: {block_message}")
|
556 |
+
error_message = f"The AI's response was blocked. Reason: {block_reason}."
|
557 |
+
if block_message: error_message += f" Details: {block_message}"
|
558 |
+
return error_message
|
559 |
+
return response.text.strip()
|
560 |
+
|
561 |
+
async def _process_query_with_timeout(self, raw_user_query_this_turn: str, timeout_seconds: int = 60) -> str:
|
562 |
+
try:
|
563 |
+
return await asyncio.wait_for(self._core_query_processing(raw_user_query_this_turn), timeout=timeout_seconds)
|
564 |
+
except asyncio.TimeoutError:
|
565 |
+
logging.error(f"Query processing timed out after {timeout_seconds} seconds for query: {raw_user_query_this_turn[:50]}")
|
566 |
+
return "I'm sorry, but your request took too long to process. Please try a simpler query or try again later."
|
567 |
|
568 |
+
async def process_query(self, raw_user_query_this_turn: str) -> str:
|
569 |
+
if not client:
|
570 |
+
logging.error("GenAI client not initialized. Cannot process query.")
|
571 |
+
return "Error: The AI Agent is not available due to a configuration issue with the AI service."
|
572 |
+
if not self._validate_query(raw_user_query_this_turn): return self._get_query_help_message()
|
573 |
+
readiness_check = await self._check_system_readiness()
|
574 |
+
if not readiness_check['ready']: return f"System not ready: {readiness_check['reason']}"
|
575 |
+
|
576 |
+
max_retries = 2
|
577 |
+
for attempt in range(max_retries + 1):
|
578 |
+
try:
|
579 |
+
response_text = await self._process_query_with_timeout(raw_user_query_this_turn)
|
580 |
+
if "The AI's response was blocked" in response_text: return response_text
|
581 |
+
logging.info(f"Successfully received AI response (attempt {attempt+1}): {response_text[:100]}")
|
582 |
+
return response_text
|
583 |
+
except RateLimitError as rle:
|
584 |
+
logging.warning(f"Rate limit encountered on attempt {attempt + 1}: {rle}. Retrying after backoff...")
|
585 |
+
if attempt == max_retries:
|
586 |
+
logging.error("Max retries reached due to rate limiting.")
|
587 |
+
return "The AI service is currently busy. Please try again in a few moments."
|
588 |
+
await asyncio.sleep(2 ** attempt)
|
589 |
+
except ValidationError as ve:
|
590 |
+
logging.warning(f"Validation error during processing: {ve}")
|
591 |
+
return f"Query validation failed: {str(ve)}"
|
592 |
+
except Exception as e:
|
593 |
+
logging.error(f"Error during GenAI call on attempt {attempt + 1}: {e}", exc_info=True)
|
594 |
+
if attempt == max_retries:
|
595 |
+
logging.error("Max retries reached due to general errors.")
|
596 |
+
return self._get_fallback_response(raw_user_query_this_turn)
|
597 |
+
return self._get_fallback_response(raw_user_query_this_turn)
|
598 |
+
|
599 |
+
def _classify_query_type(self, query: str) -> str:
|
600 |
+
query_lower = query.lower()
|
601 |
+
if any(word in query_lower for word in ['trend', 'growth', 'change', 'time']): return 'trend_analysis'
|
602 |
+
elif any(word in query_lower for word in ['compare', 'benchmark', 'versus']): return 'comparative_analysis'
|
603 |
+
elif any(word in query_lower for word in ['predict', 'forecast', 'future']): return 'predictive_analysis'
|
604 |
+
elif any(word in query_lower for word in ['recommend', 'suggest', 'improve', 'advice', 'help me with']): return 'recommendation_engine'
|
605 |
+
elif any(word in query_lower for word in ['what is', 'explain', 'define']): return 'definition_explanation'
|
606 |
+
else: return 'general_inquiry'
|
607 |
+
|
608 |
+
def clear_chat_history(self):
|
609 |
self.chat_history = []
|
610 |
logging.info("EmployerBrandingAgent chat history cleared by request.")
|
611 |
|
|
|
612 |
def get_all_schemas_representation(all_dataframes: dict) -> str:
|
613 |
+
if not all_dataframes: return "No DataFrames are currently loaded."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
614 |
schema_descriptions = ["DataFrames currently available in the application state:"]
|
615 |
for key, df in all_dataframes.items():
|
616 |
df_name = f"df_{key}"
|
|
|
619 |
if df.empty:
|
620 |
schema = f"\n--- DataFrame: {df_name} ---\nStatus: Empty\nShape: {shape}\nColumns: {columns}"
|
621 |
else:
|
622 |
+
sample_data_str = df.head(2).to_markdown(index=False)
|
|
|
623 |
schema = (f"\n--- DataFrame: {df_name} ---\nShape: {shape}\nColumns: {columns}\n\n<details><summary>Sample Data (first 2 rows of {df_name}):</summary>\n\n{sample_data_str}\n\n</details>")
|
624 |
schema_descriptions.append(schema)
|
625 |
return "\n".join(schema_descriptions)
|
626 |
|
627 |
+
async def test_rag_retrieval_accuracy():
|
628 |
+
logging.info("Running RAG retrieval accuracy test...")
|
629 |
+
test_embedding_model = GEMINI_EMBEDDING_MODEL_NAME
|
630 |
+
if not client:
|
631 |
+
logging.error("Cannot run RAG test: GenAI client not initialized.")
|
632 |
+
return
|
633 |
+
test_docs_data = {
|
634 |
+
'text': [
|
635 |
+
'Strategies for improving employee engagement include regular feedback and recognition programs.',
|
636 |
+
'Effective talent acquisition requires a strong employer brand and a streamlined hiring process.',
|
637 |
+
'Company culture is a key driver of employee satisfaction and retention.',
|
638 |
+
'Analyzing LinkedIn post performance can reveal insights into content effectiveness.'
|
639 |
+
]
|
640 |
+
}
|
641 |
+
test_docs_df = pd.DataFrame(test_docs_data)
|
642 |
+
rag_system = AdvancedRAGSystem(test_docs_df, test_embedding_model)
|
643 |
+
logging.info("Test RAG: Initializing embeddings...")
|
644 |
+
await rag_system.initialize_embeddings()
|
645 |
+
if rag_system.embeddings is None or rag_system.embeddings.size == 0:
|
646 |
+
logging.error("Test RAG: Embeddings not initialized properly.")
|
647 |
+
return
|
648 |
+
test_queries = {
|
649 |
+
"employee engagement": "engagement",
|
650 |
+
"hiring talent": "acquisition",
|
651 |
+
"company culture": "culture",
|
652 |
+
"linkedin posts": "linkedin"
|
653 |
+
}
|
654 |
+
all_tests_passed = True
|
655 |
+
for query, keyword in test_queries.items():
|
656 |
+
logging.info(f"Test RAG: Retrieving for query: '{query}'")
|
657 |
+
result = await rag_system.retrieve_relevant_info(query, top_k=1, min_similarity=0.1)
|
658 |
+
if result and keyword.lower() in result.lower():
|
659 |
+
logging.info(f"Test RAG: PASSED for query '{query}'. Found relevant doc.")
|
660 |
+
else:
|
661 |
+
logging.error(f"Test RAG: FAILED for query '{query}'. Expected keyword '{keyword}', got: {result[:100]}...")
|
662 |
+
all_tests_passed = False
|
663 |
+
if all_tests_passed: logging.info("All RAG retrieval accuracy tests passed.")
|
664 |
+
else: logging.error("Some RAG retrieval accuracy tests FAILED.")
|
665 |
+
|