Spaces:
Running
Running
Update chatbot_handler.py
Browse files- chatbot_handler.py +26 -49
chatbot_handler.py
CHANGED
@@ -19,6 +19,8 @@ generation_config_params = {
|
|
19 |
"top_p": 1,
|
20 |
"top_k": 1,
|
21 |
"max_output_tokens": 2048,
|
|
|
|
|
22 |
}
|
23 |
|
24 |
# Safety settings list
|
@@ -31,7 +33,7 @@ common_safety_settings = [
|
|
31 |
|
32 |
try:
|
33 |
if GEMINI_API_KEY:
|
34 |
-
# Initialize client using genai.Client
|
35 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
36 |
logging.info(f"Gemini client (genai.Client) initialized. Target model for generation: '{model_name}'")
|
37 |
else:
|
@@ -54,31 +56,14 @@ def format_history_for_gemini(gradio_chat_history: list) -> list:
|
|
54 |
if part_item.get("type") == "text":
|
55 |
parts.append({"text": part_item.get("text", "")})
|
56 |
if parts:
|
57 |
-
|
58 |
else:
|
59 |
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
|
60 |
else:
|
61 |
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
|
62 |
-
# For
|
63 |
-
# not a list of role-based dicts. The role-based dicts are for chat history with newer .start_chat().send_message().
|
64 |
-
# The user's example shows: contents=["Explain how AI works"]
|
65 |
-
# If the history is to be used, it needs to be formatted as a flat list of alternating user/model prompts for some older chat patterns,
|
66 |
-
# or the API might only take the latest user message if not using a dedicated chat session object.
|
67 |
-
# Given the `client.models.generate_content` structure, we might need to adjust how history is passed.
|
68 |
-
# For now, let's assume gemini_formatted_history is what `contents` expects, or it should be just the latest user message.
|
69 |
-
# The documentation for client.models.generate_content shows `contents` can be a list of parts.
|
70 |
-
# Let's re-evaluate: if chat_history_for_plot is a list of {"role": ..., "parts": ...},
|
71 |
-
# client.models.generate_content might expect `contents` to be just the parts of the last user message,
|
72 |
-
# or a more complex structure if it supports multi-turn via this method directly.
|
73 |
-
# The example `contents=[image, "Tell me about this instrument"]` suggests a list of content parts.
|
74 |
-
# Let's assume for now that the `gemini_formatted_history` (which is a list of {"role": ..., "parts": ...})
|
75 |
-
# is the correct format for the `contents` argument if the SDK version handles it.
|
76 |
-
# If not, this function or its usage in generate_llm_response will need adjustment.
|
77 |
-
# For a simple non-chat scenario, contents would be like: `[{"parts": [{"text": user_message}]}]`
|
78 |
-
# For a multi-turn conversation, the `contents` parameter for `generate_content`
|
79 |
# expects a list of `Content` objects (or dicts that can be cast to them).
|
80 |
# Each `Content` object has 'role' and 'parts'.
|
81 |
-
# So, the current `format_history_for_gemini` output *should* be correct.
|
82 |
return gemini_contents
|
83 |
|
84 |
|
@@ -87,61 +72,50 @@ async def generate_llm_response(user_message: str, plot_id: str, plot_label: str
|
|
87 |
logging.error("Gemini client (genai.Client) not initialized.")
|
88 |
return "The AI model is not available. Configuration error."
|
89 |
|
90 |
-
# gemini_formatted_history will be a list of {"role": ..., "parts": ...} dicts
|
91 |
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
|
92 |
|
93 |
-
if not gemini_formatted_history:
|
94 |
logging.error("Formatted history for Gemini is empty.")
|
95 |
return "There was an issue processing the conversation history (empty)."
|
96 |
|
97 |
-
# Ensure the last message has text if it's the only one (e.g. initial prompt)
|
98 |
if not any(part.get("text","").strip() for message in gemini_formatted_history for part in message.get("parts",[])):
|
99 |
logging.error("Formatted history for Gemini contains no text parts.")
|
100 |
return "There was an issue processing the conversation history for the AI model (empty text)."
|
101 |
|
102 |
try:
|
103 |
response = None
|
104 |
-
# We are now certain we need to use client.models.generate_content
|
105 |
if hasattr(client, 'models') and hasattr(client.models, 'generate_content'):
|
106 |
logging.debug(f"Using genai.Client.models.generate_content for model '{model_name}' (synchronous via asyncio.to_thread)")
|
107 |
|
108 |
-
# The model name for client.models.generate_content should not be prefixed with "models/"
|
109 |
-
# if it's like "gemini-1.5-flash-latest" or "gemini-2.0-flash".
|
110 |
-
# If your model_name is already "models/gemini-1.5-flash-latest", then it's fine.
|
111 |
-
# Let's assume model_name is like "gemini-1.5-flash-latest"
|
112 |
-
effective_model_name = model_name
|
113 |
-
if not model_name.startswith("models/"): # Ensure it's not like "models/models/gemini..."
|
114 |
-
effective_model_name = f"models/{model_name}" # Prepend "models/" if not already there
|
115 |
-
|
116 |
# Create the GenerateContentConfig object from our parameters
|
|
|
117 |
gen_config_obj = genai_types.GenerateContentConfig(**generation_config_params)
|
118 |
|
|
|
|
|
|
|
119 |
response = await asyncio.to_thread(
|
120 |
client.models.generate_content,
|
121 |
-
model=
|
122 |
-
contents=gemini_formatted_history,
|
123 |
-
|
124 |
safety_settings=common_safety_settings
|
125 |
)
|
126 |
else:
|
127 |
logging.error(f"Gemini client (genai.Client) does not have 'models.generate_content' method. Type: {type(client)}")
|
128 |
return "AI model interaction error (SDK method not found)."
|
129 |
|
130 |
-
# Process response
|
131 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
|
132 |
reason = response.prompt_feedback.block_reason
|
133 |
-
reason_name = getattr(reason, 'name', str(reason))
|
134 |
logging.warning(f"Blocked by prompt feedback: {reason_name}")
|
135 |
return f"Blocked due to content policy: {reason_name}."
|
136 |
|
137 |
-
# The user's documentation example uses `response.text` directly.
|
138 |
-
# This implies the response object from `client.models.generate_content` might be simpler.
|
139 |
-
# Let's check for `response.text` first.
|
140 |
if hasattr(response, 'text') and response.text:
|
141 |
logging.debug("Response has a direct .text attribute.")
|
142 |
return response.text
|
143 |
|
144 |
-
# Fallback to candidates structure if .text is not available or empty
|
145 |
logging.debug("Response does not have a direct .text attribute or it's empty, checking candidates.")
|
146 |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
|
147 |
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
|
@@ -149,16 +123,15 @@ async def generate_llm_response(user_message: str, plot_id: str, plot_label: str
|
|
149 |
finish_reason = "UNKNOWN"
|
150 |
if response.candidates and response.candidates[0].finish_reason:
|
151 |
finish_reason_val = response.candidates[0].finish_reason
|
152 |
-
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
|
153 |
|
154 |
if not (hasattr(response, 'text') and response.text) and \
|
155 |
not (response.candidates and response.candidates[0].content and response.candidates[0].content.parts):
|
156 |
logging.warning(f"No content parts in response and no direct .text. Finish reason: {finish_reason}")
|
157 |
-
if finish_reason == "SAFETY":
|
158 |
-
|
159 |
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
|
160 |
|
161 |
-
# If we reach here, it means .text was empty and candidates structure was also empty/problematic
|
162 |
return f"Unexpected response structure from AI model (checked .text and .candidates). Finish reason: {finish_reason}."
|
163 |
|
164 |
except AttributeError as ae:
|
@@ -166,9 +139,13 @@ async def generate_llm_response(user_message: str, plot_id: str, plot_label: str
|
|
166 |
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
|
167 |
except Exception as e:
|
168 |
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
|
169 |
-
# Check for specific API errors if possible
|
170 |
if "API_KEY_INVALID" in str(e) or "API key not valid" in str(e):
|
171 |
-
|
172 |
-
if "400" in str(e) and "model" in str(e).lower() and "not found" in str(e).lower():
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."
|
|
|
|
19 |
"top_p": 1,
|
20 |
"top_k": 1,
|
21 |
"max_output_tokens": 2048,
|
22 |
+
# If you need a system instruction, add it here, e.g.:
|
23 |
+
# "system_instruction": "You are a helpful AI assistant providing insights on LinkedIn analytics."
|
24 |
}
|
25 |
|
26 |
# Safety settings list
|
|
|
33 |
|
34 |
try:
|
35 |
if GEMINI_API_KEY:
|
36 |
+
# Initialize client using genai.Client
|
37 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
38 |
logging.info(f"Gemini client (genai.Client) initialized. Target model for generation: '{model_name}'")
|
39 |
else:
|
|
|
56 |
if part_item.get("type") == "text":
|
57 |
parts.append({"text": part_item.get("text", "")})
|
58 |
if parts:
|
59 |
+
gemini_contents.append({"role": role, "parts": parts})
|
60 |
else:
|
61 |
logging.warning(f"Skipping complex but empty content part in chat history: {content}")
|
62 |
else:
|
63 |
logging.warning(f"Skipping non-string/non-standard content in chat history: {content}")
|
64 |
+
# For `client.models.generate_content`, the `contents` parameter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# expects a list of `Content` objects (or dicts that can be cast to them).
|
66 |
# Each `Content` object has 'role' and 'parts'.
|
|
|
67 |
return gemini_contents
|
68 |
|
69 |
|
|
|
72 |
logging.error("Gemini client (genai.Client) not initialized.")
|
73 |
return "The AI model is not available. Configuration error."
|
74 |
|
|
|
75 |
gemini_formatted_history = format_history_for_gemini(chat_history_for_plot)
|
76 |
|
77 |
+
if not gemini_formatted_history:
|
78 |
logging.error("Formatted history for Gemini is empty.")
|
79 |
return "There was an issue processing the conversation history (empty)."
|
80 |
|
|
|
81 |
if not any(part.get("text","").strip() for message in gemini_formatted_history for part in message.get("parts",[])):
|
82 |
logging.error("Formatted history for Gemini contains no text parts.")
|
83 |
return "There was an issue processing the conversation history for the AI model (empty text)."
|
84 |
|
85 |
try:
|
86 |
response = None
|
|
|
87 |
if hasattr(client, 'models') and hasattr(client.models, 'generate_content'):
|
88 |
logging.debug(f"Using genai.Client.models.generate_content for model '{model_name}' (synchronous via asyncio.to_thread)")
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# Create the GenerateContentConfig object from our parameters
|
91 |
+
# This can include system_instruction if added to generation_config_params
|
92 |
gen_config_obj = genai_types.GenerateContentConfig(**generation_config_params)
|
93 |
|
94 |
+
# Call client.models.generate_content
|
95 |
+
# 1. Use model_name directly (e.g., "gemini-1.5-flash-latest")
|
96 |
+
# 2. Use 'config' instead of 'generation_config' for the keyword argument
|
97 |
response = await asyncio.to_thread(
|
98 |
client.models.generate_content,
|
99 |
+
model=model_name, # Use model_name directly
|
100 |
+
contents=gemini_formatted_history,
|
101 |
+
config=gen_config_obj, # Corrected keyword argument
|
102 |
safety_settings=common_safety_settings
|
103 |
)
|
104 |
else:
|
105 |
logging.error(f"Gemini client (genai.Client) does not have 'models.generate_content' method. Type: {type(client)}")
|
106 |
return "AI model interaction error (SDK method not found)."
|
107 |
|
108 |
+
# Process response
|
109 |
if hasattr(response, 'prompt_feedback') and response.prompt_feedback and response.prompt_feedback.block_reason:
|
110 |
reason = response.prompt_feedback.block_reason
|
111 |
+
reason_name = getattr(reason, 'name', str(reason))
|
112 |
logging.warning(f"Blocked by prompt feedback: {reason_name}")
|
113 |
return f"Blocked due to content policy: {reason_name}."
|
114 |
|
|
|
|
|
|
|
115 |
if hasattr(response, 'text') and response.text:
|
116 |
logging.debug("Response has a direct .text attribute.")
|
117 |
return response.text
|
118 |
|
|
|
119 |
logging.debug("Response does not have a direct .text attribute or it's empty, checking candidates.")
|
120 |
if response.candidates and response.candidates[0].content and response.candidates[0].content.parts:
|
121 |
return "".join(part.text for part in response.candidates[0].content.parts if hasattr(part, 'text'))
|
|
|
123 |
finish_reason = "UNKNOWN"
|
124 |
if response.candidates and response.candidates[0].finish_reason:
|
125 |
finish_reason_val = response.candidates[0].finish_reason
|
126 |
+
finish_reason = getattr(finish_reason_val, 'name', str(finish_reason_val))
|
127 |
|
128 |
if not (hasattr(response, 'text') and response.text) and \
|
129 |
not (response.candidates and response.candidates[0].content and response.candidates[0].content.parts):
|
130 |
logging.warning(f"No content parts in response and no direct .text. Finish reason: {finish_reason}")
|
131 |
+
if finish_reason == "SAFETY":
|
132 |
+
return f"Response generation stopped due to safety reasons. Finish reason: {finish_reason}."
|
133 |
return f"The AI model returned an empty response. Finish reason: {finish_reason}."
|
134 |
|
|
|
135 |
return f"Unexpected response structure from AI model (checked .text and .candidates). Finish reason: {finish_reason}."
|
136 |
|
137 |
except AttributeError as ae:
|
|
|
139 |
return f"AI model error (Attribute): {type(ae).__name__} - {ae}."
|
140 |
except Exception as e:
|
141 |
logging.error(f"Error generating response for plot '{plot_label}': {e}", exc_info=True)
|
|
|
142 |
if "API_KEY_INVALID" in str(e) or "API key not valid" in str(e):
|
143 |
+
return "AI model error: API key is not valid. Please check configuration."
|
144 |
+
if "400" in str(e) and "model" in str(e).lower() and "not found" in str(e).lower():
|
145 |
+
return f"AI model error: Model '{model_name}' not found or not accessible with your API key."
|
146 |
+
# Check for the specific TypeError related to generate_content arguments
|
147 |
+
if isinstance(e, TypeError) and "got an unexpected keyword argument" in str(e):
|
148 |
+
logging.error(f"TypeError in generate_content call: {e}. This might indicate an issue with SDK version or method signature.")
|
149 |
+
return f"AI model error (Internal SDK call issue): {e}"
|
150 |
return f"An unexpected error occurred while contacting the AI model: {type(e).__name__}."
|
151 |
+
|