HMC-CIS-chatbot / utils /chatbot_interface3.py
AashitaK's picture
Update utils/chatbot_interface3.py
90477c4 verified
raw
history blame
6.37 kB
import os
import json
import logging
from typing import Optional
import gradio as gr
from utils.response_manager import ResponseManager
class ChatbotInterface:
def __init__(self,
config_path: str = 'config/gradio_config.json',
model: str = "gpt-4o-mini",
temperature: float = 0,
max_output_tokens: int = 800,
max_num_results: int = 15,
vector_store_id: Optional[str] = None,
api_key: Optional[str] = None,
meta_prompt_file: Optional[str] = None):
"""
Initialize the ChatbotInterface with configuration and custom parameters for ResponseManager.
:param config_path: Path to the configuration JSON file.
:param model: The OpenAI model to use (default: 'gpt-4o-mini').
:param temperature: The temperature for response generation (default: 0).
:param max_output_tokens: The maximum number of output tokens (default: 800).
:param max_num_results: The maximum number of search results to return (default: 15).
:param vector_store_id: The ID of the vector store to use for file search.
:param api_key: The OpenAI API key for authentication.
:param meta_prompt_file: Path to the meta prompt file .
"""
self.config = self.load_config(config_path)
self.title = self.config["chatbot_title"]
self.description = self.config["chatbot_description"]
self.input_placeholder = self.config["chatbot_input_placeholder"]
self.output_label = self.config["chatbot_output_label"]
# Initialize ResponseManager with custom parameters
try:
self.response_manager = ResponseManager(
model=model,
temperature=temperature,
max_output_tokens=max_output_tokens,
max_num_results=max_num_results,
vector_store_id=vector_store_id,
api_key=api_key,
meta_prompt_file=meta_prompt_file
)
logging.info(
"ChatbotInterface initialized with the following parameters:\n"
f" - Model: {model}\n"
f" - Temperature: {temperature}\n"
f" - Max Output Tokens: {max_output_tokens}\n"
f" - Max Number of Results: {max_num_results}\n"
)
except Exception as e:
logging.error(f"Failed to initialize ResponseManager: {e}")
raise
@staticmethod
def load_config(config_path: str) -> dict:
"""
Load the configuration for Gradio GUI interface from the JSON file.
:param config_path: Path to the configuration JSON file.
:return: Configuration dictionary.
"""
logging.info(f"Loading configuration from {config_path}...")
if not os.path.exists(config_path):
logging.error(f"Configuration file not found: {config_path}")
raise FileNotFoundError(f"Configuration file not found: {config_path}")
with open(config_path, 'r') as config_file:
config = json.load(config_file)
required_keys = [
"chatbot_title",
"chatbot_description",
"chatbot_input_placeholder",
"chatbot_output_label"
]
for key in required_keys:
if key not in config:
logging.error(f"Missing required configuration key: {key}")
raise ValueError(f"Missing required configuration key: {key}")
logging.info("Configuration loaded successfully.")
return config
def create_interface(self) -> gr.Blocks:
"""
Create the Gradio Blocks interface that displays a single container including both
the text input and a small arrow submit button. The interface will clear the text input
after each message is submitted.
"""
logging.info("Creating Gradio interface...")
with gr.Blocks() as demo:
# Title and description area.
gr.Markdown(f"## {self.title}\n{self.description}")
# Chatbot output area.
chatbot_output = gr.Chatbot(label=self.output_label, type="messages")
# Use a gr.Row container as the input box with an integrated submit button.
with gr.Row(elem_id="input-container", equal_height=True):
user_input = gr.Textbox(
lines=1,
show_label=False, # Hide label for a unified look.
elem_id="chat-input",
placeholder=self.input_placeholder,
scale=500,
)
reset = gr.ClearButton(
value="Reset πŸ”„",
variant="secondary",
elem_id="reset-button",
size="lg"
)
# Define a local function to reset input
def reset_output() -> list:
"""
Reset the chatbot output.
:return: An empty list to reset the output.
"""
return [], ""
# Define a local function to process input
def process_input(user_message, chat_history):
"""
Call generate_response with the user's message and chat history.
Return a tuple with the updated chat history and an empty string to clear the input.
"""
updated_history = self.response_manager.generate_response(user_message, chat_history)
return updated_history, ""
# Bind the reset button click to the reset function
reset.click(
fn=reset_output,
inputs=None,
outputs=[chatbot_output, user_input]
)
# Bind the Enter key (textbox submit) to the same processing function
user_input.submit(
fn=process_input,
inputs=[user_input, chatbot_output],
outputs=[chatbot_output, user_input]
)
logging.info("Gradio interface created successfully.")
return demo