File size: 12,662 Bytes
f1adb14
c565171
f1adb14
c565171
 
 
 
f1adb14
 
 
fe00684
f1adb14
 
50d2a40
9e251c5
f1adb14
 
2c86eae
c565171
 
 
 
f1adb14
 
fe00684
f1adb14
 
f0eca57
c565171
f1adb14
 
 
 
c565171
f1adb14
50d2a40
f1adb14
50d2a40
fe00684
50d2a40
f1adb14
50d2a40
 
fe00684
 
50d2a40
f1adb14
c565171
c172b12
 
fe00684
c565171
fe00684
f1adb14
 
c565171
 
50d2a40
9e251c5
c565171
 
f1adb14
 
 
 
fe00684
f1adb14
50d2a40
c565171
 
 
 
 
f1adb14
c565171
fe00684
f1adb14
 
c565171
 
 
 
f1adb14
fe00684
c565171
fe00684
9e251c5
fe00684
 
c565171
9e251c5
 
c565171
fe00684
c565171
9e251c5
 
fe00684
c565171
9e251c5
 
fe00684
c565171
fe00684
9e251c5
c565171
fe00684
c565171
fe00684
 
 
c565171
 
9e251c5
c565171
 
9e251c5
fe00684
c565171
 
 
 
9e251c5
 
 
 
c565171
fe00684
 
f1adb14
c565171
f1adb14
 
9e251c5
c565171
 
c172b12
c565171
c172b12
 
c565171
9e251c5
 
 
 
 
 
c172b12
c565171
 
9e251c5
c565171
 
9e251c5
c565171
f0eca57
c565171
 
c172b12
c565171
 
 
 
 
 
 
 
 
9e251c5
 
c565171
 
 
 
9e251c5
 
 
 
 
 
 
 
 
 
 
 
 
c565171
 
9e251c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c565171
 
9e251c5
f0eca57
9e251c5
c565171
9e251c5
c565171
 
 
 
f1adb14
 
c565171
f1adb14
c565171
c172b12
 
 
 
c565171
9e251c5
c172b12
 
 
 
9e251c5
 
 
 
 
 
 
 
f1adb14
 
 
c172b12
fe00684
9e251c5
f0eca57
9e251c5
 
 
f0eca57
9e251c5
f1adb14
 
 
c565171
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# =============================================================
# Hugging Face Space – Lecture β†’ Podcast Generator (User-selectable Languages)
# =============================================================
# β€’ **Text generation** – SmolAgents `HfApiModel` (Qwen/Qwen2.5-Coder-32B-Instruct)
# β€’ **Speech synthesis** – `InferenceClient.text_to_speech`, chunk-safe
#   (MMS-TTS for en/bn/ur/ne, mms-TTS-zho for zh). Long texts are split
#   into ≀280-char chunks to stay within HF endpoint limits.
# -----------------------------------------------------------------

import os
import re
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict, Optional, Any # Added Any

import gradio as gr
from huggingface_hub import InferenceClient # Added HubHTTPError explicitly
from PyPDF2 import PdfReader # For PDF processing
from smolagents import HfApiModel # For LLM interaction
from pydub import AudioSegment # Added for robust audio concatenation
from pydub.exceptions import CouldntDecodeError # Specific pydub error

# ------------------------------------------------------------------
# LLM setup – remote Qwen model via SmolAgents
# ------------------------------------------------------------------
llm = HfApiModel(
    model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
    max_tokens=2048, # Max tokens for the generated output dialogue
    temperature=0.5,
)

# ------------------------------------------------------------------
# Hugging Face Inference API client (uses HF_TOKEN secret if provided)
# ------------------------------------------------------------------
client = InferenceClient(token=os.getenv("HF_TOKEN", None))

# ------------------------------------------------------------------
# Language metadata and corresponding open TTS model IDs
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
    "en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
    "bn": {"name": "Bangla",  "tts_model": "facebook/mms-tts-ben"},
    "zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"},
    "ur": {"name": "Urdu",    "tts_model": "facebook/mms-tts-urd"},
    "ne": {"name": "Nepali",  "tts_model": "facebook/mms-tts-npi"},
}
# For reverse lookup: language name to language code
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}

# ------------------------------------------------------------------
# Prompt template (target ~300 words for LLM output)
# ------------------------------------------------------------------
PROMPT_TEMPLATE = textwrap.dedent(
    """
    You are producing a lively two-host educational podcast in {lang_name}.
    Summarize the following lecture content into a dialogue of **approximately 300 words**.
    Make it engaging: hosts ask questions, clarify ideas with analogies, and
    wrap up with a concise recap. Preserve technical accuracy. Use Markdown for host names (e.g., **Host 1:**).

    ### Lecture Content
    {content}
    """
)

# PDF helpers -------------------------------------------------------

def extract_pdf_text(pdf_path: str) -> str:
    try:
        reader = PdfReader(pdf_path)
        return "\n".join(page.extract_text() or "" for page in reader.pages)
    except Exception as e:
        raise gr.Error(f"Failed to process PDF: {e}")

TOKEN_LIMIT = 8000

def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
    words = text.split()
    if len(words) > limit:
        gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.")
        return " ".join(words[:limit])
    return text

# ------------------------------------------------------------------
# TTS helper – chunk long text safely (HF endpoint limit ~30s / 200-300 chars)
# ------------------------------------------------------------------
CHUNK_CHAR_LIMIT = 280

def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
    sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
    sentences = [s.strip() for s in sentences_raw if s.strip()]
    if not sentences: return []
    chunks, current_chunk = [], ""
    for sent in sentences:
        if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
            chunks.append(current_chunk)
            current_chunk = sent
        else:
            current_chunk += (" " + sent) if current_chunk else sent
    if current_chunk: chunks.append(current_chunk)
    return [chunk for chunk in chunks if chunk.strip()]

def synthesize_speech(text: str, model_id: str, lang_tmpdir: Path) -> Path:
    chunks = _split_to_chunks(text)
    if not chunks: raise ValueError("Text resulted in no speakable chunks after splitting.")
    audio_segments: List[AudioSegment] = []
    for idx, chunk in enumerate(chunks):
        gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)}...")
        try:
            audio_bytes = client.text_to_speech(chunk, model=model_id)
        except HubHTTPError as e:
            error_message = f"TTS request failed for chunk {idx+1}/{len(chunks)} ('{chunk[:30]}...'): {e}"
            if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
                gr.Warning(f"Skipping an apparently empty chunk for TTS: Chunk {idx+1}")
                continue
            raise RuntimeError(error_message) from e
        part_path = lang_tmpdir / f"part_{idx}.flac"
        part_path.write_bytes(audio_bytes)
        try:
            segment = AudioSegment.from_file(part_path, format="flac")
            audio_segments.append(segment)
        except CouldntDecodeError as e:
            raise RuntimeError(f"Failed to decode audio chunk {idx+1} from {part_path}. TTS Error: {e}") from e
    if not audio_segments: raise RuntimeError("No audio segments were successfully synthesized or decoded.")
    combined_audio = sum(audio_segments, AudioSegment.empty())
    final_path = lang_tmpdir / "podcast_audio.flac" # Renamed for clarity
    combined_audio.export(final_path, format="flac")
    return final_path

# ------------------------------------------------------------------
# Main pipeline function for Gradio
# ------------------------------------------------------------------

def generate_podcast(pdf_file_obj: Optional[gr.File], selected_lang_names: List[str]) -> List[Optional[Any]]:
    if not pdf_file_obj:
        raise gr.Error("Please upload a PDF file.")
    if not selected_lang_names:
        raise gr.Error("Please select at least one language for the podcast.")

    selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
    
    # Initialize results data structure for all languages
    # Each language will have a dict for audio, script_text (for display), and script_file (for download)
    results_data: Dict[str, Dict[str, Optional[str]]] = {
        code: {"audio": None, "script_text": None, "script_file": None}
        for code in LANG_INFO.keys()
    }

    try:
        with tempfile.TemporaryDirectory() as td:
            tmpdir_base = Path(td)
            
            gr.Info("Extracting text from PDF...")
            lecture_raw = extract_pdf_text(pdf_file_obj.name)
            lecture_text = truncate_text(lecture_raw)

            if not lecture_text.strip():
                raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")

            for code in selected_codes: # Iterate only through user-selected languages
                info = LANG_INFO[code]
                lang_name = info["name"]
                tts_model = info["tts_model"]
                
                gr.Info(f"Processing for {lang_name}...")
                lang_tmpdir = tmpdir_base / code
                lang_tmpdir.mkdir(parents=True, exist_ok=True)
                
                dialogue: Optional[str] = None # Initialize dialogue for the current language scope
                
                # 1️⃣ Generate dialogue using LLM
                gr.Info(f"Generating dialogue for {lang_name}...")
                prompt = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
                try:
                    dialogue_raw: str = llm(prompt)
                    if not dialogue_raw or not dialogue_raw.strip():
                        gr.Warning(f"LLM returned empty dialogue for {lang_name}. Skipping this language.")
                        continue # Skip to the next selected language; results_data[code] remains all None
                    
                    dialogue = dialogue_raw # Keep the generated dialogue

                    # Store script text and save script to a file
                    results_data[code]["script_text"] = dialogue
                    script_file_path = lang_tmpdir / f"podcast_script_{code}.txt"
                    script_file_path.write_text(dialogue, encoding="utf-8")
                    results_data[code]["script_file"] = str(script_file_path)

                except Exception as e:
                    gr.Error(f"Error generating dialogue for {lang_name}: {e}")
                    # If dialogue generation fails, all parts for this lang remain None or partially filled
                    # The continue ensures we don't try TTS if dialogue failed
                    continue 

                # 2️⃣ Synthesize speech (only if dialogue was successfully generated)
                if dialogue: # Ensure dialogue is not None here
                    gr.Info(f"Synthesizing speech for {lang_name}...")
                    try:
                        tts_path = synthesize_speech(dialogue, tts_model, lang_tmpdir)
                        results_data[code]["audio"] = str(tts_path)
                    except ValueError as e:
                        gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
                        # Audio remains None for this language
                    except RuntimeError as e:
                        gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
                        # Audio remains None
                    except Exception as e:
                        gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
                        # Audio remains None
        
        # Convert the results_data (dict of dicts) to an ordered flat list for Gradio outputs
        final_ordered_results: List[Optional[Any]] = []
        for code_key in LANG_INFO.keys(): # Iterate in the defined order of LANG_INFO
            lang_output_data = results_data[code_key]
            final_ordered_results.append(lang_output_data["audio"])
            final_ordered_results.append(lang_output_data["script_text"])
            final_ordered_results.append(lang_output_data["script_file"])
        
        gr.Info("Podcast generation complete!")
        return final_ordered_results

    except gr.Error as e:
        raise e
    except Exception as e:
        import traceback
        print("An unexpected error occurred in generate_podcast:")
        traceback.print_exc()
        raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")

# ------------------------------------------------------------------
# Gradio Interface Setup
# ------------------------------------------------------------------
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]

inputs = [
    gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
    gr.CheckboxGroup(
        choices=language_names_ordered,
        value=["English"],
        label="Select podcast language(s) to generate",
    ),
]

# Create output components: Audio, Script Display (Markdown), Script Download (File) for each language
outputs = []
for code in LANG_INFO.keys(): # Iterate in the consistent order of LANG_INFO
    info = LANG_INFO[code]
    lang_name = info["name"]
    outputs.append(gr.Audio(label=f"{lang_name} Podcast", type="filepath"))
    outputs.append(gr.Markdown(label=f"{lang_name} Script")) # Display script as Markdown
    outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath")) # Download script

iface = gr.Interface(
    fn=generate_podcast,
    inputs=inputs,
    outputs=outputs,
    title="Lecture β†’ Podcast & Script Generator (Multi-Language)",
    description=(
        "Upload a lecture PDF, choose language(s), and receive an audio podcast "
        "and its script for each selected language. Dialogue by Qwen-32B, "
        "speech by MMS-TTS. Scripts are viewable and downloadable."
    ),
    allow_flagging="never",
)

if __name__ == "__main__":
    iface.launch()