File size: 12,662 Bytes
f1adb14 c565171 f1adb14 c565171 f1adb14 fe00684 f1adb14 50d2a40 9e251c5 f1adb14 2c86eae c565171 f1adb14 fe00684 f1adb14 f0eca57 c565171 f1adb14 c565171 f1adb14 50d2a40 f1adb14 50d2a40 fe00684 50d2a40 f1adb14 50d2a40 fe00684 50d2a40 f1adb14 c565171 c172b12 fe00684 c565171 fe00684 f1adb14 c565171 50d2a40 9e251c5 c565171 f1adb14 fe00684 f1adb14 50d2a40 c565171 f1adb14 c565171 fe00684 f1adb14 c565171 f1adb14 fe00684 c565171 fe00684 9e251c5 fe00684 c565171 9e251c5 c565171 fe00684 c565171 9e251c5 fe00684 c565171 9e251c5 fe00684 c565171 fe00684 9e251c5 c565171 fe00684 c565171 fe00684 c565171 9e251c5 c565171 9e251c5 fe00684 c565171 9e251c5 c565171 fe00684 f1adb14 c565171 f1adb14 9e251c5 c565171 c172b12 c565171 c172b12 c565171 9e251c5 c172b12 c565171 9e251c5 c565171 9e251c5 c565171 f0eca57 c565171 c172b12 c565171 9e251c5 c565171 9e251c5 c565171 9e251c5 c565171 9e251c5 f0eca57 9e251c5 c565171 9e251c5 c565171 f1adb14 c565171 f1adb14 c565171 c172b12 c565171 9e251c5 c172b12 9e251c5 f1adb14 c172b12 fe00684 9e251c5 f0eca57 9e251c5 f0eca57 9e251c5 f1adb14 c565171 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# =============================================================
# Hugging Face Space β Lecture β Podcast Generator (User-selectable Languages)
# =============================================================
# β’ **Text generation** β SmolAgents `HfApiModel` (Qwen/Qwen2.5-Coder-32B-Instruct)
# β’ **Speech synthesis** β `InferenceClient.text_to_speech`, chunk-safe
# (MMS-TTS for en/bn/ur/ne, mms-TTS-zho for zh). Long texts are split
# into β€280-char chunks to stay within HF endpoint limits.
# -----------------------------------------------------------------
import os
import re
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict, Optional, Any # Added Any
import gradio as gr
from huggingface_hub import InferenceClient # Added HubHTTPError explicitly
from PyPDF2 import PdfReader # For PDF processing
from smolagents import HfApiModel # For LLM interaction
from pydub import AudioSegment # Added for robust audio concatenation
from pydub.exceptions import CouldntDecodeError # Specific pydub error
# ------------------------------------------------------------------
# LLM setup β remote Qwen model via SmolAgents
# ------------------------------------------------------------------
llm = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
max_tokens=2048, # Max tokens for the generated output dialogue
temperature=0.5,
)
# ------------------------------------------------------------------
# Hugging Face Inference API client (uses HF_TOKEN secret if provided)
# ------------------------------------------------------------------
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
# ------------------------------------------------------------------
# Language metadata and corresponding open TTS model IDs
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
"zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"},
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"},
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
}
# For reverse lookup: language name to language code
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
# ------------------------------------------------------------------
# Prompt template (target ~300 words for LLM output)
# ------------------------------------------------------------------
PROMPT_TEMPLATE = textwrap.dedent(
"""
You are producing a lively two-host educational podcast in {lang_name}.
Summarize the following lecture content into a dialogue of **approximately 300 words**.
Make it engaging: hosts ask questions, clarify ideas with analogies, and
wrap up with a concise recap. Preserve technical accuracy. Use Markdown for host names (e.g., **Host 1:**).
### Lecture Content
{content}
"""
)
# PDF helpers -------------------------------------------------------
def extract_pdf_text(pdf_path: str) -> str:
try:
reader = PdfReader(pdf_path)
return "\n".join(page.extract_text() or "" for page in reader.pages)
except Exception as e:
raise gr.Error(f"Failed to process PDF: {e}")
TOKEN_LIMIT = 8000
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
words = text.split()
if len(words) > limit:
gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.")
return " ".join(words[:limit])
return text
# ------------------------------------------------------------------
# TTS helper β chunk long text safely (HF endpoint limit ~30s / 200-300 chars)
# ------------------------------------------------------------------
CHUNK_CHAR_LIMIT = 280
def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
sentences = [s.strip() for s in sentences_raw if s.strip()]
if not sentences: return []
chunks, current_chunk = [], ""
for sent in sentences:
if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
chunks.append(current_chunk)
current_chunk = sent
else:
current_chunk += (" " + sent) if current_chunk else sent
if current_chunk: chunks.append(current_chunk)
return [chunk for chunk in chunks if chunk.strip()]
def synthesize_speech(text: str, model_id: str, lang_tmpdir: Path) -> Path:
chunks = _split_to_chunks(text)
if not chunks: raise ValueError("Text resulted in no speakable chunks after splitting.")
audio_segments: List[AudioSegment] = []
for idx, chunk in enumerate(chunks):
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)}...")
try:
audio_bytes = client.text_to_speech(chunk, model=model_id)
except HubHTTPError as e:
error_message = f"TTS request failed for chunk {idx+1}/{len(chunks)} ('{chunk[:30]}...'): {e}"
if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
gr.Warning(f"Skipping an apparently empty chunk for TTS: Chunk {idx+1}")
continue
raise RuntimeError(error_message) from e
part_path = lang_tmpdir / f"part_{idx}.flac"
part_path.write_bytes(audio_bytes)
try:
segment = AudioSegment.from_file(part_path, format="flac")
audio_segments.append(segment)
except CouldntDecodeError as e:
raise RuntimeError(f"Failed to decode audio chunk {idx+1} from {part_path}. TTS Error: {e}") from e
if not audio_segments: raise RuntimeError("No audio segments were successfully synthesized or decoded.")
combined_audio = sum(audio_segments, AudioSegment.empty())
final_path = lang_tmpdir / "podcast_audio.flac" # Renamed for clarity
combined_audio.export(final_path, format="flac")
return final_path
# ------------------------------------------------------------------
# Main pipeline function for Gradio
# ------------------------------------------------------------------
def generate_podcast(pdf_file_obj: Optional[gr.File], selected_lang_names: List[str]) -> List[Optional[Any]]:
if not pdf_file_obj:
raise gr.Error("Please upload a PDF file.")
if not selected_lang_names:
raise gr.Error("Please select at least one language for the podcast.")
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
# Initialize results data structure for all languages
# Each language will have a dict for audio, script_text (for display), and script_file (for download)
results_data: Dict[str, Dict[str, Optional[str]]] = {
code: {"audio": None, "script_text": None, "script_file": None}
for code in LANG_INFO.keys()
}
try:
with tempfile.TemporaryDirectory() as td:
tmpdir_base = Path(td)
gr.Info("Extracting text from PDF...")
lecture_raw = extract_pdf_text(pdf_file_obj.name)
lecture_text = truncate_text(lecture_raw)
if not lecture_text.strip():
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
for code in selected_codes: # Iterate only through user-selected languages
info = LANG_INFO[code]
lang_name = info["name"]
tts_model = info["tts_model"]
gr.Info(f"Processing for {lang_name}...")
lang_tmpdir = tmpdir_base / code
lang_tmpdir.mkdir(parents=True, exist_ok=True)
dialogue: Optional[str] = None # Initialize dialogue for the current language scope
# 1οΈβ£ Generate dialogue using LLM
gr.Info(f"Generating dialogue for {lang_name}...")
prompt = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
try:
dialogue_raw: str = llm(prompt)
if not dialogue_raw or not dialogue_raw.strip():
gr.Warning(f"LLM returned empty dialogue for {lang_name}. Skipping this language.")
continue # Skip to the next selected language; results_data[code] remains all None
dialogue = dialogue_raw # Keep the generated dialogue
# Store script text and save script to a file
results_data[code]["script_text"] = dialogue
script_file_path = lang_tmpdir / f"podcast_script_{code}.txt"
script_file_path.write_text(dialogue, encoding="utf-8")
results_data[code]["script_file"] = str(script_file_path)
except Exception as e:
gr.Error(f"Error generating dialogue for {lang_name}: {e}")
# If dialogue generation fails, all parts for this lang remain None or partially filled
# The continue ensures we don't try TTS if dialogue failed
continue
# 2οΈβ£ Synthesize speech (only if dialogue was successfully generated)
if dialogue: # Ensure dialogue is not None here
gr.Info(f"Synthesizing speech for {lang_name}...")
try:
tts_path = synthesize_speech(dialogue, tts_model, lang_tmpdir)
results_data[code]["audio"] = str(tts_path)
except ValueError as e:
gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
# Audio remains None for this language
except RuntimeError as e:
gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
# Audio remains None
except Exception as e:
gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
# Audio remains None
# Convert the results_data (dict of dicts) to an ordered flat list for Gradio outputs
final_ordered_results: List[Optional[Any]] = []
for code_key in LANG_INFO.keys(): # Iterate in the defined order of LANG_INFO
lang_output_data = results_data[code_key]
final_ordered_results.append(lang_output_data["audio"])
final_ordered_results.append(lang_output_data["script_text"])
final_ordered_results.append(lang_output_data["script_file"])
gr.Info("Podcast generation complete!")
return final_ordered_results
except gr.Error as e:
raise e
except Exception as e:
import traceback
print("An unexpected error occurred in generate_podcast:")
traceback.print_exc()
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
# ------------------------------------------------------------------
# Gradio Interface Setup
# ------------------------------------------------------------------
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]
inputs = [
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
gr.CheckboxGroup(
choices=language_names_ordered,
value=["English"],
label="Select podcast language(s) to generate",
),
]
# Create output components: Audio, Script Display (Markdown), Script Download (File) for each language
outputs = []
for code in LANG_INFO.keys(): # Iterate in the consistent order of LANG_INFO
info = LANG_INFO[code]
lang_name = info["name"]
outputs.append(gr.Audio(label=f"{lang_name} Podcast", type="filepath"))
outputs.append(gr.Markdown(label=f"{lang_name} Script")) # Display script as Markdown
outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath")) # Download script
iface = gr.Interface(
fn=generate_podcast,
inputs=inputs,
outputs=outputs,
title="Lecture β Podcast & Script Generator (Multi-Language)",
description=(
"Upload a lecture PDF, choose language(s), and receive an audio podcast "
"and its script for each selected language. Dialogue by Qwen-32B, "
"speech by MMS-TTS. Scripts are viewable and downloadable."
),
allow_flagging="never",
)
if __name__ == "__main__":
iface.launch() |