File size: 15,657 Bytes
53744b5
 
 
 
 
 
 
f1adb14
fe00684
f1adb14
 
50d2a40
53744b5
f1adb14
 
53744b5
f036ad8
 
f1adb14
53744b5
 
 
 
 
 
 
 
 
f1adb14
50d2a40
53744b5
 
 
50d2a40
f1adb14
53744b5
 
 
 
 
f1adb14
c172b12
 
53744b5
 
 
f1adb14
 
c565171
53744b5
50d2a40
53744b5
c565171
 
f1adb14
 
 
 
53744b5
50d2a40
c565171
 
 
 
 
f1adb14
53744b5
 
f1adb14
 
c565171
53744b5
c565171
 
f1adb14
53744b5
 
 
 
 
fe00684
 
53744b5
 
 
 
fe00684
53744b5
 
 
fe00684
53744b5
 
 
fe00684
f036ad8
53744b5
 
 
 
 
 
 
fe00684
f036ad8
53744b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f036ad8
fe00684
53744b5
 
 
 
 
 
 
 
 
 
c565171
53744b5
 
c565171
53744b5
 
 
 
f036ad8
53744b5
 
 
 
fe00684
f1adb14
53744b5
f1adb14
 
53744b5
 
 
 
 
 
 
 
 
c565171
53744b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1adb14
 
53744b5
f1adb14
53744b5
c172b12
 
53744b5
 
 
 
 
 
 
 
 
 
 
c172b12
 
9e251c5
53744b5
 
 
 
 
 
f1adb14
 
 
c172b12
fe00684
53744b5
 
 
 
 
 
 
 
 
 
 
 
f1adb14
 
 
53744b5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# =============================================================
# Hugging Face Space – Lecture β†’ Podcast Generator (Google Gemini & TTS)
# =============================================================
# β€’ **Text generation** – Google Gemini API
# β€’ **Speech synthesis** – Google Cloud Text-to-Speech API
# -----------------------------------------------------------------

import os
import re
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict, Optional, Any

import gradio as gr
from PyPDF2 import PdfReader
from pydub import AudioSegment
from pydub.exceptions import CouldntDecodeError

# Import Google Cloud libraries
try:
    import google.generativeai as genai
    from google.cloud import texttospeech
except ImportError:
    raise ImportError(
        "Please install required Google libraries: "
        "pip install google-generativeai google-cloud-texttospeech"
    )

# ------------------------------------------------------------------
# Language metadata for Google TTS (BCP-47 codes)
# You might want to specify particular voices too (e.g., "en-US-Wavenet-D")
# For simplicity, we'll let Google pick a standard voice for the language code.
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
    "en": {"name": "English", "tts_lang_code": "en-US"},
    "bn": {"name": "Bangla",  "tts_lang_code": "bn-IN"},
    "zh": {"name": "Chinese (Mandarin)", "tts_lang_code": "cmn-CN"}, # cmn for Mandarin
    "ur": {"name": "Urdu",    "tts_lang_code": "ur-PK"},
    "ne": {"name": "Nepali",  "tts_lang_code": "ne-NP"},
}
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}

# ------------------------------------------------------------------
# Prompt template (adjust if needed for Gemini's style)
# ------------------------------------------------------------------
PROMPT_TEMPLATE = textwrap.dedent(
    """
    You are producing a lively two-host educational podcast in {lang_name}.
    Summarize the following lecture content into a dialogue of **approximately 300 words**.
    Make it engaging: hosts ask questions, clarify ideas with analogies, and
    wrap up with a concise recap. Preserve technical accuracy. Use Markdown for host names (e.g., **Host 1:**).

    ### Lecture Content
    {content}
    """
)

# PDF helpers (unchanged) -------------------------------------------
def extract_pdf_text(pdf_path: str) -> str:
    try:
        reader = PdfReader(pdf_path)
        return "\n".join(page.extract_text() or "" for page in reader.pages)
    except Exception as e:
        raise gr.Error(f"Failed to process PDF: {e}")

TOKEN_LIMIT = 8000 # Word limit for input text

def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
    words = text.split()
    if len(words) > limit:
        gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.")
        return " ".join(words[:limit])
    return text

# ------------------------------------------------------------------
# TTS helper – chunk long text (Google TTS has a limit of 5000 bytes per request)
# ------------------------------------------------------------------
CHUNK_CHAR_LIMIT = 1500  # Google TTS limit is 5000 bytes. Characters are safer.
                        # Average 3 bytes/char for UTF-8, so 1500 chars is ~4500 bytes.

def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
    sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
    sentences = [s.strip() for s in sentences_raw if s.strip()]
    if not sentences: return []
    chunks, current_chunk = [], ""
    for sent in sentences:
        if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
            chunks.append(current_chunk)
            current_chunk = sent
        else:
            current_chunk += (" " + sent) if current_chunk else sent
    if current_chunk: chunks.append(current_chunk)
    return [chunk for chunk in chunks if chunk.strip()]


def synthesize_speech_google(
    text: str, 
    google_lang_code: str, 
    lang_tmpdir: Path,
    tts_client: texttospeech.TextToSpeechClient
) -> Path:
    """Splits text, synthesizes with Google TTS, concatenates MP3s."""
    chunks = _split_to_chunks(text)
    if not chunks:
        raise ValueError("Text resulted in no speakable chunks after splitting.")

    audio_segments: List[AudioSegment] = []
    for idx, chunk in enumerate(chunks):
        gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)} with Google TTS...")
        
        synthesis_input = texttospeech.SynthesisInput(text=chunk)
        voice = texttospeech.VoiceSelectionParams(
            language_code=google_lang_code,
            # You can specify a voice name, e.g., "en-US-Wavenet-D"
            # ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL # Optional
        )
        audio_config = texttospeech.AudioConfig(
            audio_encoding=texttospeech.AudioEncoding.MP3
        )

        try:
            response = tts_client.synthesize_speech(
                input=synthesis_input, voice=voice, audio_config=audio_config
            )
        except Exception as e:
            raise RuntimeError(f"Google TTS request failed for chunk {idx+1}: {e}") from e

        part_path = lang_tmpdir / f"part_{idx}.mp3"
        with open(part_path, "wb") as out_mp3:
            out_mp3.write(response.audio_content)
        
        try:
            segment = AudioSegment.from_mp3(part_path)
            audio_segments.append(segment)
        except CouldntDecodeError as e:
            raise RuntimeError(f"Failed to decode MP3 audio chunk {idx+1} from {part_path}. Error: {e}") from e

    if not audio_segments:
        raise RuntimeError("No audio segments were successfully synthesized or decoded.")

    combined_audio = sum(audio_segments, AudioSegment.empty())
    final_path = lang_tmpdir / "podcast_audio.mp3"
    combined_audio.export(final_path, format="mp3")
    return final_path

# ------------------------------------------------------------------
# Main pipeline function for Gradio
# ------------------------------------------------------------------

def generate_podcast(
    gemini_api_key: Optional[str],
    pdf_file_obj: Optional[gr.File],
    selected_lang_names: List[str]
) -> List[Optional[Any]]:

    if not gemini_api_key:
        raise gr.Error("Please enter your Google AI Studio API Key for Gemini.")
    if not pdf_file_obj:
        raise gr.Error("Please upload a PDF file.")
    if not selected_lang_names:
        raise gr.Error("Please select at least one language for the podcast.")

    try:
        genai.configure(api_key=gemini_api_key)
    except Exception as e:
        raise gr.Error(f"Failed to configure Gemini API. Check your API key. Error: {e}")

    # IMPORTANT: Google Cloud Text-to-Speech client initialization.
    # It expects GOOGLE_APPLICATION_CREDENTIALS environment variable to be set,
    # pointing to your service account JSON key file.
    # In Hugging Face Spaces, upload this JSON file as a Secret, e.g., named
    # `GOOGLE_CREDS_JSON_CONTENT` (paste the content of the file).
    # Then, in your Space's startup or here, you'd write this content to a temporary file
    # and set GOOGLE_APPLICATION_CREDENTIALS to that temp file's path.
    # Or, if GOOGLE_APPLICATION_CREDENTIALS points to a file path directly (less secure for pasted content).
    
    # Example for setting GOOGLE_APPLICATION_CREDENTIALS from a Space secret:
    google_creds_json_content = os.getenv("GOOGLE_CREDS_JSON_CONTENT")
    temp_creds_file = None
    if google_creds_json_content:
        try:
            fd, temp_creds_path = tempfile.mkstemp(suffix=".json")
            with os.fdopen(fd, "w") as tmp:
                tmp.write(google_creds_json_content)
            os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_creds_path
            temp_creds_file = Path(temp_creds_path)
            gr.Info("Using GOOGLE_CREDS_JSON_CONTENT secret for Text-to-Speech API authentication.")
        except Exception as e:
            gr.Warning(f"Could not process GOOGLE_CREDS_JSON_CONTENT secret: {e}. TTS might fail.")
    elif not os.getenv("GOOGLE_APPLICATION_CREDENTIALS"):
        gr.Warning(
            "GOOGLE_APPLICATION_CREDENTIALS environment variable not set, and no "
            "GOOGLE_CREDS_JSON_CONTENT secret found. "
            "Google Text-to-Speech API calls may fail. "
            "Please set up authentication for Google Cloud Text-to-Speech."
        )
        
    try:
        tts_client = texttospeech.TextToSpeechClient()
    except Exception as e:
        raise gr.Error(f"Failed to initialize Google Text-to-Speech client. Ensure authentication is set up. Error: {e}")


    selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
    results_data: Dict[str, Dict[str, Optional[str]]] = {
        code: {"audio": None, "script_text": None, "script_file": None}
        for code in LANG_INFO.keys()
    }

    try:
        with tempfile.TemporaryDirectory() as td:
            tmpdir_base = Path(td)
            
            gr.Info("Extracting text from PDF...")
            lecture_raw = extract_pdf_text(pdf_file_obj.name)
            lecture_text = truncate_text(lecture_raw)

            if not lecture_text.strip():
                raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")

            # Initialize Gemini model (e.g., 'gemini-1.5-flash' or 'gemini-pro')
            # Choose a model appropriate for your task and quota.
            gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest') # Or 'gemini-pro'

            for code in selected_codes:
                info = LANG_INFO[code]
                lang_name = info["name"]
                google_tts_lang = info["tts_lang_code"]
                
                gr.Info(f"Processing for {lang_name}...")
                lang_tmpdir = tmpdir_base / code
                lang_tmpdir.mkdir(parents=True, exist_ok=True)
                
                dialogue: Optional[str] = None
                
                gr.Info(f"Generating dialogue for {lang_name} with Gemini...")
                prompt_for_gemini = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
                try:
                    response = gemini_model.generate_content(prompt_for_gemini)
                    dialogue_raw = response.text # Accessing the text part of the response
                    
                    if not dialogue_raw or not dialogue_raw.strip():
                        gr.Warning(f"Gemini returned empty dialogue for {lang_name}. Skipping.")
                        continue
                    
                    dialogue = dialogue_raw
                    results_data[code]["script_text"] = dialogue
                    script_file_path = lang_tmpdir / f"podcast_script_{code}.txt"
                    script_file_path.write_text(dialogue, encoding="utf-8")
                    results_data[code]["script_file"] = str(script_file_path)

                except Exception as e:
                    gr.Error(f"Error generating dialogue with Gemini for {lang_name}: {e}")
                    continue 

                if dialogue:
                    gr.Info(f"Synthesizing speech for {lang_name} with Google TTS...")
                    try:
                        tts_path = synthesize_speech_google(dialogue, google_tts_lang, lang_tmpdir, tts_client)
                        results_data[code]["audio"] = str(tts_path)
                    except ValueError as e:
                        gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
                    except RuntimeError as e:
                        gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
                    except Exception as e:
                        gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
        
        final_ordered_results: List[Optional[Any]] = []
        for code_key in LANG_INFO.keys():
            lang_output_data = results_data[code_key]
            final_ordered_results.append(lang_output_data["audio"])
            final_ordered_results.append(lang_output_data["script_text"])
            final_ordered_results.append(lang_output_data["script_file"])
        
        gr.Info("Podcast generation complete!")
        return final_ordered_results

    except gr.Error as e:
        raise e
    except Exception as e:
        import traceback
        print("An unexpected error occurred in generate_podcast:")
        traceback.print_exc()
        raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
    finally:
        # Clean up the temporary credentials file if it was created
        if temp_creds_file and temp_creds_file.exists():
            try:
                temp_creds_file.unlink()
                # Unset the env var if you want, though it's specific to this run
                # if "GOOGLE_APPLICATION_CREDENTIALS" in os.environ and os.environ["GOOGLE_APPLICATION_CREDENTIALS"] == str(temp_creds_file):
                # del os.environ["GOOGLE_APPLICATION_CREDENTIALS"]
            except Exception as e_clean:
                print(f"Warning: Could not clean up temporary credentials file {temp_creds_file}: {e_clean}")


# ------------------------------------------------------------------
# Gradio Interface Setup
# ------------------------------------------------------------------
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]

inputs = [
    gr.Textbox(
        label="Enter your Google AI Studio API Key (for Gemini)",
        type="password",
        placeholder="Paste your API key here",
    ),
    gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
    gr.CheckboxGroup(
        choices=language_names_ordered,
        value=["English"],
        label="Select podcast language(s) to generate",
    ),
]

outputs = []
for code in LANG_INFO.keys():
    info = LANG_INFO[code]
    lang_name = info["name"]
    outputs.append(gr.Audio(label=f"{lang_name} Podcast (.mp3)", type="filepath"))
    outputs.append(gr.Markdown(label=f"{lang_name} Script"))
    outputs.append(gr.File(label=f"Download {lang_name} Script (.txt)", type="filepath"))

iface = gr.Interface(
    fn=generate_podcast,
    inputs=inputs,
    outputs=outputs,
    title="Lecture β†’ Podcast & Script (Google Gemini & TTS)",
    description=(
        "**IMPORTANT SETUP:**\n"
        "1. Enter your Google AI Studio API Key for Gemini text generation.\n"
        "2. For Text-to-Speech: Enable the 'Cloud Text-to-Speech API' in your Google Cloud Project. "
        "Create a service account with 'Cloud Text-to-Speech API User' role, download its JSON key. "
        "In this Hugging Face Space, go to 'Settings' -> 'Secrets' and add a new secret named `GOOGLE_CREDS_JSON_CONTENT`. "
        "Paste the *entire content* of your service account JSON key file as the value for this secret.\n\n"
        "Upload a lecture PDF, choose language(s), and receive an audio podcast "
        "and its script. Dialogue by Google Gemini, speech by Google Cloud TTS."
    ),
    allow_flagging="never",
)

if __name__ == "__main__":
    # Make sure GOOGLE_CREDS_JSON_CONTENT is available as an environment variable
    # or GOOGLE_APPLICATION_CREDENTIALS is set correctly if running locally for testing.
    # For local testing with a service account key file:
    # os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "path/to/your/service-account-file.json"
    iface.launch()