PodCastIt / app.py
HaiderAUT's picture
Update app.py
c565171 verified
raw
history blame
14.1 kB
# =============================================================
# Hugging Face Space – Lecture β†’ Podcast Generator (User-selectable Languages)
# =============================================================
# β€’ **Text generation** – SmolAgents `HfApiModel` (Qwen/Qwen2.5-Coder-32B-Instruct)
# β€’ **Speech synthesis** – `InferenceClient.text_to_speech`, chunk-safe
# (MMS-TTS for en/bn/ur/ne, mms-TTS-zho for zh). Long texts are split
# into ≀280-char chunks to stay within HF endpoint limits.
# -----------------------------------------------------------------
import os
import re
import tempfile
import textwrap
from pathlib import Path
from typing import List, Dict, Optional
import gradio as gr
from huggingface_hub import InferenceClient, HubHTTPError
from PyPDF2 import PdfReader # For PDF processing
from smolagents import HfApiModel # For LLM interaction
from pydub import AudioSegment # Added for robust audio concatenation
from pydub.exceptions import CouldntDecodeError # Specific pydub error
# ------------------------------------------------------------------
# LLM setup – remote Qwen model via SmolAgents
# ------------------------------------------------------------------
llm = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
max_tokens=2048, # Max tokens for the generated output dialogue
temperature=0.5,
)
# ------------------------------------------------------------------
# Hugging Face Inference API client (uses HF_TOKEN secret if provided)
# ------------------------------------------------------------------
client = InferenceClient(token=os.getenv("HF_TOKEN", None))
# ------------------------------------------------------------------
# Language metadata and corresponding open TTS model IDs
# ------------------------------------------------------------------
LANG_INFO: Dict[str, Dict[str, str]] = {
"en": {"name": "English", "tts_model": "facebook/mms-tts-eng"},
"bn": {"name": "Bangla", "tts_model": "facebook/mms-tts-ben"},
"zh": {"name": "Chinese", "tts_model": "facebook/mms-tts-zho"},
"ur": {"name": "Urdu", "tts_model": "facebook/mms-tts-urd"},
"ne": {"name": "Nepali", "tts_model": "facebook/mms-tts-npi"},
}
# For reverse lookup: language name to language code
LANG_CODE_BY_NAME = {info["name"]: code for code, info in LANG_INFO.items()}
# ------------------------------------------------------------------
# Prompt template (target ~300 words for LLM output)
# ------------------------------------------------------------------
PROMPT_TEMPLATE = textwrap.dedent(
"""
You are producing a lively two-host educational podcast in {lang_name}.
Summarize the following lecture content into a dialogue of **approximately 300 words**.
Make it engaging: hosts ask questions, clarify ideas with analogies, and
wrap up with a concise recap. Preserve technical accuracy.
### Lecture Content
{content}
"""
)
# PDF helpers -------------------------------------------------------
def extract_pdf_text(pdf_path: str) -> str:
try:
reader = PdfReader(pdf_path)
return "\n".join(page.extract_text() or "" for page in reader.pages)
except Exception as e:
# Raise a Gradio error to display it in the UI
raise gr.Error(f"Failed to process PDF: {e}")
# Increased slightly; Qwen models have large context windows. This is input *words*.
# Actual limit is in tokens. Qwen2.5-Coder-32B-Instruct context is 65536 tokens.
# 8000 words is still conservative. The prompt itself also consumes tokens.
TOKEN_LIMIT = 8000
def truncate_text(text: str, limit: int = TOKEN_LIMIT) -> str:
words = text.split()
if len(words) > limit:
gr.Warning(f"Input text was truncated from {len(words)} to {limit} words to fit LLM context window.")
return " ".join(words[:limit])
return text
# ------------------------------------------------------------------
# TTS helper – chunk long text safely (HF endpoint limit ~30s / 200-300 chars)
# ------------------------------------------------------------------
CHUNK_CHAR_LIMIT = 280 # Safe margin for MMS-TTS character limit per request
def _split_to_chunks(text: str, limit: int = CHUNK_CHAR_LIMIT) -> List[str]:
# Split on sentence boundaries (.!?) while respecting the character limit per chunk.
sentences_raw = re.split(r"(?<=[.!?])\s+", text.strip())
sentences = [s.strip() for s in sentences_raw if s.strip()] # Clean and filter empty sentences
if not sentences:
return []
chunks, current_chunk = [], ""
for sent in sentences:
# If current_chunk is empty, the first sentence always starts a new chunk.
# If current_chunk is not empty, check if adding the new sentence (plus a space) exceeds the limit.
if current_chunk and (len(current_chunk) + len(sent) + 1 > limit):
chunks.append(current_chunk) # Finalize the current chunk
current_chunk = sent # Start a new chunk with the current sentence
else:
# Append sentence to current_chunk (with a space if current_chunk is not empty)
current_chunk += (" " + sent) if current_chunk else sent
if current_chunk: # Add any remaining part as the last chunk
chunks.append(current_chunk)
return [chunk for chunk in chunks if chunk.strip()] # Ensure no empty chunks are returned
def synthesize_speech(text: str, model_id: str, lang_tmpdir: Path) -> Path:
"""Splits text into chunks, synthesizes speech for each, and concatenates them using pydub."""
chunks = _split_to_chunks(text)
if not chunks:
raise ValueError("Text resulted in no speakable chunks after splitting.")
audio_segments: List[AudioSegment] = []
for idx, chunk in enumerate(chunks):
gr.Info(f"Synthesizing audio for chunk {idx + 1}/{len(chunks)}...")
try:
audio_bytes = client.text_to_speech(chunk, model=model_id)
except HubHTTPError as e:
error_message = f"TTS request failed for chunk {idx+1}/{len(chunks)} ('{chunk[:30]}...'): {e}"
if "Input validation error: `inputs` must be non-empty" in str(e) and not chunk.strip():
gr.Warning(f"Skipping an apparently empty chunk for TTS that wasn't filtered: Chunk {idx+1}")
continue
raise RuntimeError(error_message) from e
part_path = lang_tmpdir / f"part_{idx}.flac" # Assuming TTS returns FLAC
part_path.write_bytes(audio_bytes)
try:
# Load the audio part using pydub.
# MMS TTS via HF Inference API usually returns WAV by default, but filename implies FLAC.
# If API returns WAV, use format="wav". If FLAC, format="flac".
# The original code implies FLAC, so we'll stick to that.
segment = AudioSegment.from_file(part_path, format="flac")
audio_segments.append(segment)
except CouldntDecodeError as e:
# This can happen if the audio data is not valid FLAC or is empty/corrupted.
raise RuntimeError(
f"Failed to decode audio chunk {idx+1} from {part_path}. "
f"Audio data might be corrupted, empty, or not in FLAC format. TTS Error: {e}"
) from e
if not audio_segments:
raise RuntimeError("No audio segments were successfully synthesized or decoded.")
# Concatenate all audio segments
combined_audio = sum(audio_segments, AudioSegment.empty()) # Efficient sum for pydub
final_path = lang_tmpdir / "podcast.flac"
combined_audio.export(final_path, format="flac")
return final_path
# ------------------------------------------------------------------
# Main pipeline function for Gradio
# ------------------------------------------------------------------
def generate_podcast(pdf_file_obj: Optional[gr.File], selected_lang_names: List[str]):
if not pdf_file_obj:
raise gr.Error("Please upload a PDF file.")
if not selected_lang_names:
raise gr.Error("Please select at least one language for the podcast.")
# Map selected language names back to their codes
selected_codes = [LANG_CODE_BY_NAME[name] for name in selected_lang_names]
# Initialize results map. Keys are lang codes, values will be audio file paths or None.
# This helps in populating results for selected languages only.
results_map: Dict[str, Optional[str]] = {code: None for code in LANG_INFO.keys()}
try:
with tempfile.TemporaryDirectory() as td:
tmpdir_base = Path(td) # Base temporary directory
gr.Info("Extracting text from PDF...")
lecture_raw = extract_pdf_text(pdf_file_obj.name) # .name is path to temp uploaded file
lecture_text = truncate_text(lecture_raw)
if not lecture_text.strip():
raise gr.Error("Could not extract any text from the PDF, or the PDF content is empty.")
for code in selected_codes: # Iterate only through user-selected languages
info = LANG_INFO[code]
lang_name = info["name"]
tts_model = info["tts_model"]
gr.Info(f"Processing for {lang_name}...")
# Create a language-specific subdirectory within the base temporary directory
lang_tmpdir = tmpdir_base / code
lang_tmpdir.mkdir(parents=True, exist_ok=True)
# 1️⃣ Generate dialogue using LLM
gr.Info(f"Generating dialogue for {lang_name}...")
prompt = PROMPT_TEMPLATE.format(lang_name=lang_name, content=lecture_text)
try:
dialogue: str = llm(prompt)
if not dialogue or not dialogue.strip():
gr.Warning(f"LLM returned empty dialogue for {lang_name}. Skipping TTS for this language.")
results_map[code] = None
continue # Move to the next selected language
except Exception as e:
gr.Error(f"Error generating dialogue for {lang_name}: {e}")
results_map[code] = None
continue
# 2️⃣ Synthesize speech from the dialogue (chunked and concatenated)
gr.Info(f"Synthesizing speech for {lang_name}...")
try:
tts_path = synthesize_speech(dialogue, tts_model, lang_tmpdir)
results_map[code] = str(tts_path) # Store the file path for this language
except ValueError as e: # From _split_to_chunks or synthesize_speech if no chunks
gr.Warning(f"Could not synthesize speech for {lang_name} (ValueError): {e}")
results_map[code] = None
except RuntimeError as e: # From synthesize_speech (TTS/pydub errors)
gr.Error(f"Error synthesizing speech for {lang_name} (RuntimeError): {e}")
results_map[code] = None
except Exception as e: # Catch any other unexpected errors during synthesis
gr.Error(f"Unexpected error during speech synthesis for {lang_name}: {e}")
results_map[code] = None
# Convert the results_map to an ordered list based on LANG_INFO keys.
# This ensures the returned list matches the order of Gradio output components.
final_results = [results_map[lang_code] for lang_code in LANG_INFO.keys()]
gr.Info("Podcast generation complete!")
return final_results
except gr.Error as e: # Re-raise Gradio-specific errors to be displayed in UI
raise e
except Exception as e: # Catch other unexpected errors during the process
# Log the full error for debugging purposes (e.g., to server logs)
import traceback
print("An unexpected error occurred in generate_podcast:")
traceback.print_exc()
# Show a generic error message in the UI
raise gr.Error(f"An unexpected server error occurred. Details: {str(e)[:100]}...")
# ------------------------------------------------------------------
# Gradio Interface Setup
# ------------------------------------------------------------------
# Ensure choices and outputs maintain consistent order related to LANG_INFO
language_names_ordered = [LANG_INFO[code]["name"] for code in LANG_INFO.keys()]
inputs = [
gr.File(label="Upload Lecture PDF", file_types=[".pdf"]),
gr.CheckboxGroup(
choices=language_names_ordered,
value=["English"], # Default language selection
label="Select podcast language(s) to generate",
),
]
# Create an gr.Audio output component for each language, in the defined order
outputs = [
gr.Audio(label=f"{LANG_INFO[code]['name']} Podcast", type="filepath")
for code in LANG_INFO.keys()
]
iface = gr.Interface(
fn=generate_podcast,
inputs=inputs,
outputs=outputs,
title="Lecture β†’ Podcast Generator (Multi-Language)",
description=(
"Upload a lecture PDF, choose language(s), and receive a two-host "
"audio podcast for each selected language. Dialogue is generated by Qwen-32B, "
"and speech is synthesized using open MMS-TTS models via the HF Inference API. "
"Long texts are automatically chunked, and audio parts are robustly combined."
),
allow_flagging="never", # Set to "auto" or "manual" if you want to enable flagging
# Provide examples if you have sample PDFs accessible to the Gradio app
# examples=[
# ["path/to/sample_lecture.pdf", ["English", "Chinese"]],
# ]
)
if __name__ == "__main__":
# For local testing, ensure ffmpeg is installed and in PATH if pydub relies on it
# for FLAC conversion or other operations not handled by its built-in capabilities.
# The Hugging Face Inference API for MMS-TTS should ideally return FLAC directly
# if the model specified (e.g., facebook/mms-tts-eng) outputs that format.
iface.launch()