keduClassifier / app.py
Hajorda's picture
Create app.py
a4e0d82 verified
raw
history blame
7.17 kB
# app.py (for a Hugging Face Space using Gradio)
import gradio as gr
import torch
import pytorch_lightning as pl
from timm import create_model
import torch.nn as nn
from box import Box
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
import cv2
import pickle
from PIL import Image
import numpy as np
import os
import requests # For fetching funny cat GIFs
from huggingface_hub import hf_hub_download
# --- Re-use your model definition and loading functions ---
# (This part would be similar to your inference.py)
HF_USERNAME = "Hajorda" # Or the username of the model owner
HF_MODEL_NAME = "keduClasifier"
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}"
cfg_dict_for_inference = {
'model_name': 'swin_tiny_patch4_window7_224', # Match training
'dropout_backbone': 0.1, # Match training
'dropout_fc': 0.2, # Match training
'img_size': (224, 224),
'num_classes': 37, # IMPORTANT: This must be correct for your trained model
}
cfg_inference = Box(cfg_dict_for_inference)
class PetBreedModel(pl.LightningModule): # Paste your PetBreedModel class here
def __init__(self, cfg: Box):
super().__init__()
self.cfg = cfg
self.backbone = create_model(
self.cfg.model_name, pretrained=False, num_classes=0,
in_chans=3, drop_rate=self.cfg.dropout_backbone
)
h, w = self.cfg.img_size
dummy_input = torch.randn(1, 3, h, w)
with torch.no_grad(): num_features = self.backbone(dummy_input).shape[-1]
self.fc = nn.Sequential(
nn.Linear(num_features, num_features // 2), nn.ReLU(),
nn.Dropout(self.cfg.dropout_fc),
nn.Linear(num_features // 2, self.cfg.num_classes)
)
def forward(self, x):
features = self.backbone(x); output = self.fc(features)
return output
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"):
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename)
# Important: Ensure cfg_inference is correctly defined with num_classes
if cfg_inference.num_classes is None:
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.")
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False)
loaded_model.eval()
return loaded_model
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"):
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename)
with open(le_path, 'rb') as f: label_encoder = pickle.load(f)
return label_encoder
# Load model and encoder once when the app starts
model = load_model_from_hf_for_space()
label_encoder = load_label_encoder_from_hf_for_space()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# --- Funny elements ---
funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"]
GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional: For more variety, get a Giphy API key
def get_funny_cat_gif(breed_name):
try:
# Use a public API if you don't have a Giphy key, or a simpler source
# For example, a predefined list of GIFs
predefined_gifs = {
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif",
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif",
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif"
}
return predefined_gifs.get(breed_name.lower().replace(" ", "_"), predefined_gifs["default"])
# If using Giphy API:
# search_term = f"{breed_name} {random.choice(funny_cat_keywords)}"
# params = {'api_key': GIPHY_API_KEY, 'q': search_term, 'limit': 1, 'rating': 'g'}
# response = requests.get("http://api.giphy.com/v1/gifs/search", params=params)
# response.raise_for_status()
# return response.json()['data'][0]['images']['original']['url']
except Exception as e:
print(f"Error fetching GIF: {e}")
return predefined_gifs["default"] # Fallback
# --- Gradio Interface Function ---
def classify_cat_breed(image_input):
# Gradio provides image as a NumPy array
img_rgb = cv2.cvtColor(image_input, cv2.COLOR_BGR2RGB) # Ensure it's RGB if needed
h, w = cfg_inference.img_size
transforms_gradio = A.Compose([
A.Resize(height=h, width=w),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2(),
])
input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device)
with torch.no_grad():
logits = model(input_tensor)
probabilities = torch.softmax(logits, dim=1)
# Get top N predictions if you want
# top_probs, top_indices = torch.topk(probabilities, 3, dim=1)
# For single prediction:
confidence, predicted_idx = torch.max(probabilities, dim=1)
predicted_breed_id = predicted_idx.item()
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0]
conf_score = confidence.item()
# Funny message and GIF
funny_message = f"I'm {conf_score*100:.1f}% sure this adorable furball is a {predicted_breed_name}! What a purrfect specimen!"
if conf_score < 0.7:
funny_message += " ...Or maybe it's a new, super-rare breed only I can see. πŸ˜‰"
gif_url = get_funny_cat_gif(predicted_breed_name)
# Gradio expects a dictionary for multiple outputs if you name them
# Or a tuple if you don't name them in gr.Interface outputs
return (
f"{predicted_breed_name} (Confidence: {conf_score*100:.2f}%)",
funny_message,
gif_url # Gradio can display images/GIFs from URLs
)
# --- Define the Gradio Interface ---
title = "😸 Purrfect Breed Guesser 3000 😼"
description = "Upload a picture of a cat, and I'll (hilariously) try to guess its breed! Powered by AI and a bit of cat-titude."
article = "<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='https://huggingface.co/YOUR_HF_USERNAME/my-pet-breed-classifier-swin-tiny' target='_blank'>Model Card</a></p>"
iface = gr.Interface(
fn=classify_cat_breed,
inputs=gr.Image(type="numpy", label="Upload Cat Pic! πŸ“Έ"),
outputs=[
gr.Textbox(label="🧐 My Guess Is..."),
gr.Textbox(label="πŸ’¬ My Deep Thoughts..."),
gr.Image(type="filepath", label="πŸŽ‰ Celebration GIF! πŸŽ‰") # 'filepath' for URLs
],
title=title,
description=description,
article=article,
examples=[["example_cat1.jpg"], ["example_cat2.jpg"]], # Add paths to example images in your Space repo
theme=gr.themes.Soft() # Or try other themes!
)
if __name__ == "__main__":
iface.launch()