Spaces:
Sleeping
Sleeping
# app.py (for a Hugging Face Space using Gradio) | |
import gradio as gr | |
import torch | |
import pytorch_lightning as pl | |
from timm import create_model | |
import torch.nn as nn | |
from box import Box | |
import albumentations as A | |
from albumentations.pytorch.transforms import ToTensorV2 | |
import cv2 | |
import pickle | |
from PIL import Image | |
import numpy as np | |
import os | |
import requests # For fetching funny cat GIFs | |
from huggingface_hub import hf_hub_download | |
# --- Re-use your model definition and loading functions --- | |
# (This part would be similar to your inference.py) | |
HF_USERNAME = "Hajorda" # Or the username of the model owner | |
HF_MODEL_NAME = "keduClasifier" | |
REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}" | |
cfg_dict_for_inference = { | |
'model_name': 'swin_tiny_patch4_window7_224', # Match training | |
'dropout_backbone': 0.1, # Match training | |
'dropout_fc': 0.2, # Match training | |
'img_size': (224, 224), | |
'num_classes': 37, # IMPORTANT: This must be correct for your trained model | |
} | |
cfg_inference = Box(cfg_dict_for_inference) | |
class PetBreedModel(pl.LightningModule): # Paste your PetBreedModel class here | |
def __init__(self, cfg: Box): | |
super().__init__() | |
self.cfg = cfg | |
self.backbone = create_model( | |
self.cfg.model_name, pretrained=False, num_classes=0, | |
in_chans=3, drop_rate=self.cfg.dropout_backbone | |
) | |
h, w = self.cfg.img_size | |
dummy_input = torch.randn(1, 3, h, w) | |
with torch.no_grad(): num_features = self.backbone(dummy_input).shape[-1] | |
self.fc = nn.Sequential( | |
nn.Linear(num_features, num_features // 2), nn.ReLU(), | |
nn.Dropout(self.cfg.dropout_fc), | |
nn.Linear(num_features // 2, self.cfg.num_classes) | |
) | |
def forward(self, x): | |
features = self.backbone(x); output = self.fc(features) | |
return output | |
def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"): | |
model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename) | |
# Important: Ensure cfg_inference is correctly defined with num_classes | |
if cfg_inference.num_classes is None: | |
raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.") | |
loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False) | |
loaded_model.eval() | |
return loaded_model | |
def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"): | |
le_path = hf_hub_download(repo_id=repo_id, filename=le_filename) | |
with open(le_path, 'rb') as f: label_encoder = pickle.load(f) | |
return label_encoder | |
# Load model and encoder once when the app starts | |
model = load_model_from_hf_for_space() | |
label_encoder = load_label_encoder_from_hf_for_space() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# --- Funny elements --- | |
funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"] | |
GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional: For more variety, get a Giphy API key | |
def get_funny_cat_gif(breed_name): | |
try: | |
# Use a public API if you don't have a Giphy key, or a simpler source | |
# For example, a predefined list of GIFs | |
predefined_gifs = { | |
"abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif", | |
"siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif", | |
"default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif" | |
} | |
return predefined_gifs.get(breed_name.lower().replace(" ", "_"), predefined_gifs["default"]) | |
# If using Giphy API: | |
# search_term = f"{breed_name} {random.choice(funny_cat_keywords)}" | |
# params = {'api_key': GIPHY_API_KEY, 'q': search_term, 'limit': 1, 'rating': 'g'} | |
# response = requests.get("http://api.giphy.com/v1/gifs/search", params=params) | |
# response.raise_for_status() | |
# return response.json()['data'][0]['images']['original']['url'] | |
except Exception as e: | |
print(f"Error fetching GIF: {e}") | |
return predefined_gifs["default"] # Fallback | |
# --- Gradio Interface Function --- | |
def classify_cat_breed(image_input): | |
# Gradio provides image as a NumPy array | |
img_rgb = cv2.cvtColor(image_input, cv2.COLOR_BGR2RGB) # Ensure it's RGB if needed | |
h, w = cfg_inference.img_size | |
transforms_gradio = A.Compose([ | |
A.Resize(height=h, width=w), | |
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
ToTensorV2(), | |
]) | |
input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device) | |
with torch.no_grad(): | |
logits = model(input_tensor) | |
probabilities = torch.softmax(logits, dim=1) | |
# Get top N predictions if you want | |
# top_probs, top_indices = torch.topk(probabilities, 3, dim=1) | |
# For single prediction: | |
confidence, predicted_idx = torch.max(probabilities, dim=1) | |
predicted_breed_id = predicted_idx.item() | |
predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0] | |
conf_score = confidence.item() | |
# Funny message and GIF | |
funny_message = f"I'm {conf_score*100:.1f}% sure this adorable furball is a {predicted_breed_name}! What a purrfect specimen!" | |
if conf_score < 0.7: | |
funny_message += " ...Or maybe it's a new, super-rare breed only I can see. π" | |
gif_url = get_funny_cat_gif(predicted_breed_name) | |
# Gradio expects a dictionary for multiple outputs if you name them | |
# Or a tuple if you don't name them in gr.Interface outputs | |
return ( | |
f"{predicted_breed_name} (Confidence: {conf_score*100:.2f}%)", | |
funny_message, | |
gif_url # Gradio can display images/GIFs from URLs | |
) | |
# --- Define the Gradio Interface --- | |
title = "πΈ Purrfect Breed Guesser 3000 πΌ" | |
description = "Upload a picture of a cat, and I'll (hilariously) try to guess its breed! Powered by AI and a bit of cat-titude." | |
article = "<p style='text-align: center'>Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. <a href='https://huggingface.co/YOUR_HF_USERNAME/my-pet-breed-classifier-swin-tiny' target='_blank'>Model Card</a></p>" | |
iface = gr.Interface( | |
fn=classify_cat_breed, | |
inputs=gr.Image(type="numpy", label="Upload Cat Pic! πΈ"), | |
outputs=[ | |
gr.Textbox(label="π§ My Guess Is..."), | |
gr.Textbox(label="π¬ My Deep Thoughts..."), | |
gr.Image(type="filepath", label="π Celebration GIF! π") # 'filepath' for URLs | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=[["example_cat1.jpg"], ["example_cat2.jpg"]], # Add paths to example images in your Space repo | |
theme=gr.themes.Soft() # Or try other themes! | |
) | |
if __name__ == "__main__": | |
iface.launch() |