Spaces:
Sleeping
Sleeping
File size: 7,357 Bytes
64fd9b7 edc48fd ebbe4db 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db edc48fd 64fd9b7 edc48fd a46e32d edc48fd 64fd9b7 a46e32d edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd ebbe4db edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 ebbe4db 64fd9b7 ebbe4db edc48fd ebbe4db 64fd9b7 ebbe4db 64fd9b7 ebbe4db edc48fd 64fd9b7 ebbe4db edc48fd ebbe4db edc48fd 64fd9b7 ebbe4db 64fd9b7 ebbe4db edc48fd ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db a46e32d ebbe4db edc48fd ebbe4db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# app/rag_system.py
from __future__ import annotations
import os, re
from pathlib import Path
from typing import List, Tuple
import faiss
import numpy as np
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
ROOT_DIR = Path(__file__).resolve().parent.parent
DATA_DIR = ROOT_DIR / "data"
UPLOAD_DIR = DATA_DIR / "uploads"
INDEX_DIR = DATA_DIR / "index"
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
d.mkdir(parents=True, exist_ok=True)
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
# Output dili – EN üçün "en" saxla (default en)
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
# --- util funksiyalar ---
NUM_PAT = re.compile(r"(\d+([.,]\d+)?|%|m²|AZN|usd|eur|\bset\b|\bmt\b)", re.IGNORECASE)
def _split_sentences(text: str) -> List[str]:
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
def _mostly_numeric(s: str) -> bool:
# daha aqressiv threshold
alnum = [c for c in s if c.isalnum()]
if not alnum:
return True
digits = sum(c.isdigit() for c in alnum)
return digits / max(1, len(alnum)) > 0.3
def _tabular_like(s: str) -> bool:
# rəqəmlər/ölçülər/valyuta bol olan sətirləri at
hits = len(NUM_PAT.findall(s))
return hits >= 2 or "Page" in s or len(s) < 20
def _clean_for_summary(text: str) -> str:
lines = []
for ln in text.splitlines():
t = " ".join(ln.split())
if not t:
continue
if _mostly_numeric(t) or _tabular_like(t):
continue
lines.append(t)
return " ".join(lines)
class SimpleRAG:
def __init__(
self,
index_path: Path = INDEX_DIR / "faiss.index",
meta_path: Path = INDEX_DIR / "meta.npy",
model_name: str = MODEL_NAME,
cache_dir: Path = CACHE_DIR,
):
self.index_path = Path(index_path)
self.meta_path = Path(meta_path)
self.model_name = model_name
self.cache_dir = Path(cache_dir)
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
self.embed_dim = self.model.get_sentence_embedding_dimension()
# translator lazy-load
self._translator = None
self.index: faiss.Index = None # type: ignore
self.chunks: List[str] = []
self._load()
# ---- translator (az->en) ----
def _translate_to_en(self, texts: List[str]) -> List[str]:
if OUTPUT_LANG != "en" or not texts:
return texts
try:
if self._translator is None:
from transformers import pipeline
# Helsinki-NLP az->en
self._translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-az-en",
cache_dir=str(self.cache_dir),
device=-1,
)
outs = self._translator(texts, max_length=400)
return [o["translation_text"] for o in outs]
except Exception:
# tərcümə alınmasa, orijinalı qaytar
return texts
def _load(self) -> None:
if self.meta_path.exists():
try:
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
except Exception:
self.chunks = []
if self.index_path.exists():
try:
idx = faiss.read_index(str(self.index_path))
self.index = idx if getattr(idx, "d", None) == self.embed_dim else faiss.IndexFlatIP(self.embed_dim)
except Exception:
self.index = faiss.IndexFlatIP(self.embed_dim)
else:
self.index = faiss.IndexFlatIP(self.embed_dim)
def _persist(self) -> None:
faiss.write_index(self.index, str(self.index_path))
np.save(self.meta_path, np.array(self.chunks, dtype=object))
@staticmethod
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
reader = PdfReader(str(pdf_path))
pages = []
for p in reader.pages:
t = p.extract_text() or ""
if t.strip():
pages.append(t)
chunks: List[str] = []
for txt in pages:
for i in range(0, len(txt), step):
part = txt[i:i+step].strip()
if part:
chunks.append(part)
return chunks
def add_pdf(self, pdf_path: Path) -> int:
texts = self._pdf_to_texts(pdf_path)
if not texts:
return 0
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
self.index.add(emb.astype(np.float32))
self.chunks.extend(texts)
self._persist()
return len(texts)
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
if self.index is None or self.index.ntotal == 0:
return []
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
D, I = self.index.search(q, min(k, max(1, self.index.ntotal)))
out: List[Tuple[str, float]] = []
if I.size > 0 and self.chunks:
for idx, score in zip(I[0], D[0]):
if 0 <= idx < len(self.chunks):
out.append((self.chunks[idx], float(score)))
return out
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 5) -> str:
if not contexts:
return "No relevant context found. Please upload a PDF or ask a more specific question."
# Candidate sentences (clean + split)
candidates: List[str] = []
for c in contexts[:5]:
cleaned = _clean_for_summary(c)
for s in _split_sentences(cleaned):
if 40 <= len(s) <= 240 and not _tabular_like(s):
candidates.append(s)
if not candidates:
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
# Rank by similarity
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
scores = (cand_emb @ q_emb.T).ravel()
order = np.argsort(-scores)
# Pick top sentences with dedup by lowercase
selected: List[str] = []
seen = set()
for i in order:
s = candidates[i].strip()
key = s.lower()
if key in seen:
continue
seen.add(key)
selected.append(s)
if len(selected) >= max_sentences:
break
# Translate to EN if needed
if OUTPUT_LANG == "en":
selected = self._translate_to_en(selected)
bullets = "\n".join(f"- {s}" for s in selected)
return f"Answer (based on document context):\n{bullets}"
def synthesize_answer(question: str, contexts: List[str]) -> str:
return SimpleRAG().synthesize_answer(question, contexts)
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"]
|