Spaces:
Sleeping
Sleeping
File size: 8,108 Bytes
64fd9b7 edc48fd ebbe4db 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 a46e32d 6b6b475 a46e32d ebbe4db a46e32d 6b6b475 a46e32d ebbe4db 6b6b475 ebbe4db 6b6b475 ebbe4db 6b6b475 edc48fd 64fd9b7 edc48fd 6b6b475 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 edc48fd 6b6b475 edc48fd 6b6b475 64fd9b7 edc48fd 64fd9b7 edc48fd 64fd9b7 6b6b475 ebbe4db 64fd9b7 ebbe4db edc48fd ebbe4db 64fd9b7 a7ef914 ebbe4db 64fd9b7 ebbe4db edc48fd 64fd9b7 ebbe4db edc48fd ebbe4db edc48fd 64fd9b7 ebbe4db 64fd9b7 6b6b475 70b60a8 6b6b475 f06409c edc48fd ebbe4db a7ef914 70b60a8 a7ef914 70b60a8 a7ef914 6b6b475 70b60a8 f06409c 6b6b475 f06409c 6b6b475 ebbe4db a46e32d ebbe4db a7ef914 ebbe4db a7ef914 ebbe4db 6b6b475 70b60a8 ebbe4db f06409c a46e32d ebbe4db edc48fd ebbe4db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# app/rag_system.py
from __future__ import annotations
import os, re
from pathlib import Path
from typing import List, Tuple
import faiss
import numpy as np
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
ROOT_DIR = Path(__file__).resolve().parent.parent
DATA_DIR = ROOT_DIR / "data"
UPLOAD_DIR = DATA_DIR / "uploads"
INDEX_DIR = DATA_DIR / "index"
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
d.mkdir(parents=True, exist_ok=True)
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
def _split_sentences(text: str) -> List[str]:
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
def _mostly_numeric(s: str) -> bool:
alnum = [c for c in s if c.isalnum()]
if not alnum:
return True
digits = sum(c.isdigit() for c in alnum)
return digits / max(1, len(alnum)) > 0.3
def _tabular_like(s: str) -> bool:
hits = len(NUM_TOK_RE.findall(s))
return hits >= 2 or "Page" in s or len(s) < 20
def _clean_for_summary(text: str) -> str:
out = []
for ln in text.splitlines():
t = " ".join(ln.split())
if not t or _mostly_numeric(t) or _tabular_like(t):
continue
out.append(t)
return " ".join(out)
def _norm_fingerprint(s: str) -> str:
s = s.lower()
s = "".join(ch for ch in s if ch.isalpha() or ch.isspace())
return " ".join(s.split())
def _sim_jaccard(a: str, b: str) -> float:
aw = set(a.lower().split())
bw = set(b.lower().split())
if not aw or not bw:
return 0.0
return len(aw & bw) / len(aw | bw)
def _looks_azerbaijani(s: str) -> bool:
has_az = any(ch in AZ_CHARS for ch in s)
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
return has_az or non_ascii_ratio > 0.15
class SimpleRAG:
def __init__(
self,
index_path: Path = INDEX_DIR / "faiss.index",
meta_path: Path = INDEX_DIR / "meta.npy",
model_name: str = MODEL_NAME,
cache_dir: Path = CACHE_DIR,
):
self.index_path = Path(index_path)
self.meta_path = Path(meta_path)
self.model_name = model_name
self.cache_dir = Path(cache_dir)
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
self.embed_dim = self.model.get_sentence_embedding_dimension()
self._translator = None # lazy
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
self.chunks: List[str] = []
self._load()
def _load(self) -> None:
if self.meta_path.exists():
try:
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
except Exception:
self.chunks = []
if self.index_path.exists():
try:
idx = faiss.read_index(str(self.index_path))
if getattr(idx, "d", None) == self.embed_dim:
self.index = idx
except Exception:
pass
def _persist(self) -> None:
faiss.write_index(self.index, str(self.index_path))
np.save(self.meta_path, np.array(self.chunks, dtype=object))
@staticmethod
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
reader = PdfReader(str(pdf_path))
pages: List[str] = []
for p in reader.pages:
t = p.extract_text() or ""
if t.strip():
pages.append(t)
chunks: List[str] = []
for txt in pages:
for i in range(0, len(txt), step):
part = txt[i : i + step].strip()
if part:
chunks.append(part)
return chunks
def add_pdf(self, pdf_path: Path) -> int:
texts = self._pdf_to_texts(pdf_path)
if not texts:
return 0
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
self.index.add(emb.astype(np.float32))
self.chunks.extend(texts)
self._persist()
return len(texts)
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
if self.index is None or self.index.ntotal == 0:
return []
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
D, I = self.index.search(q, min(k, max(1, self.index.ntotal)))
out: List[Tuple[str, float]] = []
if I.size > 0 and self.chunks:
for idx, score in zip(I[0], D[0]):
if 0 <= idx < len(self.chunks):
out.append((self.chunks[idx], float(score)))
return out
def _translate_to_en(self, texts: List[str]) -> List[str]:
if not texts:
return texts
try:
from transformers import pipeline
if self._translator is None:
self._translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-az-en",
cache_dir=str(self.cache_dir),
device=-1,
)
outs = self._translator(texts, max_length=800)
return [o["translation_text"].strip() for o in outs]
except Exception:
return texts
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
if not contexts:
return "No relevant context found. Please upload a PDF or ask a more specific question."
# 1) Clean top contexts
cleaned_contexts = [_clean_for_summary(c) for c in contexts[:5]]
cleaned_contexts = [c for c in cleaned_contexts if len(c) > 40]
if not cleaned_contexts:
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
# 2) Pre-translate paragraphs to EN (if target is EN)
if OUTPUT_LANG == "en":
try:
cleaned_contexts = self._translate_to_en(cleaned_contexts)
except Exception:
pass
# 3) Split into sentence candidates & filter
candidates: List[str] = []
for para in cleaned_contexts:
for s in _split_sentences(para):
w = s.split()
if not (8 <= len(w) <= 35):
continue
if _tabular_like(s) or _mostly_numeric(s):
continue
candidates.append(" ".join(w))
if not candidates:
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
# 4) Rank by similarity to question
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
scores = (cand_emb @ q_emb.T).ravel()
order = np.argsort(-scores)
# 5) Aggressive near-duplicate removal (Jaccard >= 0.90)
selected: List[str] = []
for i in order:
s = candidates[i].strip()
if any(_sim_jaccard(s, t) >= 0.90 for t in selected):
continue
selected.append(s)
if len(selected) >= max_sentences:
break
if not selected:
return "The document appears largely tabular/numeric; couldn't extract readable sentences."
bullets = "\n".join(f"- {s}" for s in selected)
return f"Answer (based on document context):\n{bullets}"
def synthesize_answer(question: str, contexts: List[str]) -> str:
return SimpleRAG().synthesize_answer(question, contexts)
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"]
|