Spaces:
Running
Running
# app/rag_system.py | |
from __future__ import annotations | |
import os | |
import re | |
from pathlib import Path | |
from typing import List, Tuple, Optional | |
import faiss | |
import numpy as np | |
from ftfy import fix_text as _ftfy_fix | |
# Prefer pypdf; fallback to PyPDF2 if needed | |
try: | |
from pypdf import PdfReader # type: ignore | |
except Exception: # pragma: no cover | |
try: | |
from PyPDF2 import PdfReader # type: ignore | |
except Exception: # pragma: no cover | |
PdfReader = None # will try pdfminer if available | |
# sentence-transformers encoder | |
from sentence_transformers import SentenceTransformer | |
# ---------------- Paths & Cache (HF-safe) ---------------- | |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app")) # HF Spaces writeable base | |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data"))) | |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads"))) | |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index"))) | |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) # transformers uses HF_HOME | |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR): | |
d.mkdir(parents=True, exist_ok=True) | |
# ---------------- Config ---------------- | |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").strip().lower() # "en" → translate AZ→EN | |
# ---------------- Text helpers ---------------- | |
# Join AZ letters split by spaces (e.g., "H Ə F T Ə" → "HƏFTƏ") | |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇçÜü" | |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b") | |
def _fix_intra_word_spaces(s: str) -> str: | |
if not s: | |
return s | |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s) | |
def _fix_mojibake(s: str) -> str: | |
"""Fix common UTF-8-as-Latin-1 mojibake quickly; then ftfy.""" | |
if not s: | |
return s | |
if any(sym in s for sym in ("Ã", "Ä", "Å", "Ð", "Þ", "þ", "â")): | |
try: | |
s = s.encode("latin-1", "ignore").decode("utf-8", "ignore") | |
except Exception: | |
pass | |
# ftfy final pass (safe on already-correct text) | |
return _ftfy_fix(s) | |
def _clean_for_summary(text: str) -> str: | |
"""Remove ultra-short / numeric / tabular-ish lines, collapse spaces.""" | |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|mt|m2)\b", re.IGNORECASE) | |
def _mostly_numeric(s: str) -> bool: | |
alnum = [c for c in s if c.isalnum()] | |
if not alnum: | |
return True | |
digits = sum(c.isdigit() for c in alnum) | |
return digits / max(1, len(alnum)) > 0.30 | |
def _tabular_like(s: str) -> bool: | |
hits = len(NUM_TOKEN_RE.findall(s)) | |
return hits >= 2 or "Page" in s or len(s) < 20 | |
out = [] | |
for ln in text.splitlines(): | |
t = " ".join(ln.split()) | |
if not t or _mostly_numeric(t) or _tabular_like(t): | |
continue | |
out.append(t) | |
return " ".join(out) | |
def _split_sentences(text: str) -> List[str]: | |
# simple splitter ok for extractive snippets | |
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()] | |
STOPWORDS = { | |
"the","a","an","and","or","of","to","in","on","for","with","by", | |
"this","that","these","those","is","are","was","were","be","been","being", | |
"at","as","it","its","from","into","about","over","after","before","than", | |
"such","can","could","should","would","may","might","will","shall", | |
} | |
def _keywords(text: str) -> List[str]: | |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower()) | |
return [t for t in toks if t not in STOPWORDS and len(t) > 2] | |
def _sim_jaccard(a: str, b: str) -> float: | |
aw = set(a.lower().split()) | |
bw = set(b.lower().split()) | |
if not aw or not bw: | |
return 0.0 | |
return len(aw & bw) / len(aw | bw) | |
# ---------------- RAG Core ---------------- | |
class SimpleRAG: | |
""" | |
Minimal RAG core: | |
- FAISS (IP) over sentence-transformers embeddings | |
- PDF → texts with robust decoding (pypdf/PyPDF2 + ftfy; optional pdfminer fallback) | |
- Extractive answer synthesis with embedding ranking + keyword fallback | |
""" | |
def __init__( | |
self, | |
index_path: Path = INDEX_DIR / "faiss.index", | |
meta_path: Path = INDEX_DIR / "meta.npy", | |
model_name: str = MODEL_NAME, | |
cache_dir: Path = CACHE_DIR, | |
): | |
self.index_path = Path(index_path) | |
self.meta_path = Path(meta_path) | |
self.model_name = model_name | |
self.cache_dir = Path(cache_dir) | |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir)) | |
self.embed_dim = int(self.model.get_sentence_embedding_dimension()) | |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim) | |
self.chunks: List[str] = [] | |
self.last_added: List[str] = [] | |
self._translator = None # lazy init | |
self._load() | |
# ---------- Persistence ---------- | |
def _load(self) -> None: | |
if self.meta_path.exists(): | |
try: | |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() | |
except Exception: | |
self.chunks = [] | |
if self.index_path.exists(): | |
try: | |
idx = faiss.read_index(str(self.index_path)) | |
if getattr(idx, "d", None) == self.embed_dim: | |
self.index = idx | |
except Exception: | |
pass | |
def _persist(self) -> None: | |
faiss.write_index(self.index, str(self.index_path)) | |
np.save(self.meta_path, np.array(self.chunks, dtype=object)) | |
# ---------- Public utils ---------- | |
def is_empty(self) -> bool: | |
return getattr(self.index, "ntotal", 0) == 0 or not self.chunks | |
def faiss_ntotal(self) -> int: | |
return int(getattr(self.index, "ntotal", 0)) | |
def model_dim(self) -> int: | |
return int(self.embed_dim) | |
def reset_index(self) -> None: | |
self.index = faiss.IndexFlatIP(self.embed_dim) | |
self.chunks = [] | |
self.last_added = [] | |
try: | |
if self.index_path.exists(): | |
self.index_path.unlink() | |
except Exception: | |
pass | |
try: | |
if self.meta_path.exists(): | |
self.meta_path.unlink() | |
except Exception: | |
pass | |
# ---------- PDF → texts ---------- | |
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]: | |
texts: List[str] = [] | |
# A) pypdf / PyPDF2 | |
if PdfReader is not None: | |
try: | |
reader = PdfReader(str(pdf_path)) | |
for p in getattr(reader, "pages", []): | |
t = p.extract_text() or "" | |
t = _fix_mojibake(t) | |
t = _fix_intra_word_spaces(t) | |
if t.strip(): | |
texts.append(t) | |
except Exception: | |
pass | |
# B) Optional pdfminer fallback if nothing extracted | |
if not texts: | |
try: | |
from pdfminer.high_level import extract_text # type: ignore | |
raw = extract_text(str(pdf_path)) or "" | |
raw = _fix_mojibake(raw) | |
raw = _fix_intra_word_spaces(raw) | |
if raw.strip(): | |
texts = [raw] | |
except Exception: | |
pass | |
# Split to fixed-size chunks (simple & fast) | |
chunks: List[str] = [] | |
for txt in texts: | |
for i in range(0, len(txt), step): | |
part = txt[i : i + step].strip() | |
if part: | |
chunks.append(part) | |
return chunks | |
# ---------- Indexing ---------- | |
def add_pdf(self, pdf_path: Path) -> int: | |
texts = self._pdf_to_texts(pdf_path) | |
if not texts: | |
return 0 | |
# final cleaning for safety | |
texts = [_fix_mojibake(_fix_intra_word_spaces(t)) for t in texts] | |
emb = self.model.encode( | |
texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False | |
) | |
self.index.add(emb.astype(np.float32)) | |
self.chunks.extend(texts) | |
self.last_added = texts[:] | |
self._persist() | |
return len(texts) | |
# ---------- Search ---------- | |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: | |
if self.is_empty: | |
return [] | |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
k = max(1, min(int(k or 5), self.faiss_ntotal or 1)) | |
D, I = self.index.search(q, k) | |
out: List[Tuple[str, float]] = [] | |
if I.size > 0 and self.chunks: | |
for idx, score in zip(I[0], D[0]): | |
if 0 <= idx < len(self.chunks): | |
out.append((self.chunks[idx], float(score))) | |
return out | |
# ---------- Translation (optional) ---------- | |
def _translate_to_en(self, texts: List[str]) -> List[str]: | |
if not texts: | |
return texts | |
try: | |
from transformers import pipeline # lazy import | |
if self._translator is None: | |
self._translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-az-en", | |
cache_dir=str(self.cache_dir), | |
device=-1, | |
) | |
outs = self._translator(texts, max_length=400) | |
return [o["translation_text"].strip() for o in outs] | |
except Exception: | |
return texts # graceful fallback | |
# ---------- Fallbacks ---------- | |
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4) -> List[str]: | |
qk = set(_keywords(question)) | |
if not qk: | |
return [] | |
candidates: List[Tuple[float, str]] = [] | |
for text in pool[:200]: | |
cleaned = _clean_for_summary(text) | |
for s in _split_sentences(cleaned): | |
w = s.split() | |
if not (8 <= len(w) <= 40): | |
continue | |
toks = set(_keywords(s)) | |
if not toks: | |
continue | |
overlap = len(qk & toks) | |
if overlap == 0: | |
continue | |
length_penalty = max(8, min(40, len(w))) | |
score = overlap + min(0.5, overlap / length_penalty) | |
candidates.append((score, s)) | |
candidates.sort(key=lambda x: x[0], reverse=True) | |
out: List[str] = [] | |
for _, s in candidates: | |
if any(_sim_jaccard(s, t) >= 0.82 for t in out): | |
continue | |
out.append(s) | |
if len(out) >= limit_sentences: | |
break | |
return out | |
# ---------- Answer Synthesis ---------- | |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str: | |
if not contexts and self.is_empty: | |
return "No relevant context found. Index is empty — upload a PDF first." | |
# Strong decoding & spacing fixes on contexts | |
contexts = [_fix_mojibake(_fix_intra_word_spaces(c)) for c in (contexts or [])] | |
# Build candidate sentences from top contexts | |
local_pool: List[str] = [] | |
for c in (contexts or [])[:5]: | |
cleaned = _clean_for_summary(c) | |
for s in _split_sentences(cleaned): | |
w = s.split() | |
if not (8 <= len(w) <= 40): | |
continue | |
local_pool.append(" ".join(w)) | |
selected: List[str] = [] | |
if local_pool: | |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
cand_emb = self.model.encode(local_pool, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
scores = (cand_emb @ q_emb.T).ravel() | |
order = np.argsort(-scores) | |
for i in order: | |
s = local_pool[i].strip() | |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected): | |
continue | |
selected.append(s) | |
if len(selected) >= max_sentences: | |
break | |
# Fallback via keywords over entire corpus | |
if not selected: | |
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences) | |
if not selected: | |
return "No readable sentences matched the question. Try a more specific query." | |
# Optional AZ→EN translate if output language is English and text is non-ASCII | |
if OUTPUT_LANG == "en" and any(ord(ch) > 127 for ch in " ".join(selected)): | |
try: | |
selected = self._translate_to_en(selected) | |
except Exception: | |
pass | |
bullets = "\n".join(f"- {s}" for s in selected) | |
return f"Answer (based on document context):\n{bullets}" | |
# Public API | |
__all__ = [ | |
"SimpleRAG", | |
"UPLOAD_DIR", | |
"INDEX_DIR", | |
] | |