Spaces:
Running
Running

Robust RAG: pdfminer fallback, safe last_added, 400 on scanned PDFs, stats & reset endpoints
40a908e
# app/rag_system.py | |
from __future__ import annotations | |
import os, re | |
from pathlib import Path | |
from typing import List, Tuple | |
import faiss | |
import numpy as np | |
from pypdf import PdfReader | |
from sentence_transformers import SentenceTransformer | |
ROOT_DIR = Path(__file__).resolve().parent.parent | |
DATA_DIR = ROOT_DIR / "data" | |
UPLOAD_DIR = DATA_DIR / "uploads" | |
INDEX_DIR = DATA_DIR / "index" | |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) | |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR): | |
d.mkdir(parents=True, exist_ok=True) | |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower() | |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ") | |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE) | |
GENERIC_Q_RE = re.compile( | |
r"(what\s+is\s+(it|this|the\s+document)\s+about\??|what\s+is\s+about\??|summary|overview)", | |
re.IGNORECASE, | |
) | |
def _split_sentences(text: str) -> List[str]: | |
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()] | |
def _mostly_numeric(s: str) -> bool: | |
alnum = [c for c in s if s and c.isalnum()] | |
if not alnum: | |
return True | |
digits = sum(c.isdigit() for c in alnum) | |
return digits / max(1, len(alnum)) > 0.3 | |
def _tabular_like(s: str) -> bool: | |
hits = len(NUM_TOK_RE.findall(s)) | |
return hits >= 4 or len(s) < 15 | |
def _clean_for_summary(text: str) -> str: | |
out = [] | |
for ln in text.splitlines(): | |
t = " ".join(ln.split()) | |
if not t or _mostly_numeric(t) or _tabular_like(t): | |
continue | |
out.append(t) | |
return " ".join(out) | |
def _sim_jaccard(a: str, b: str) -> float: | |
aw = set(a.lower().split()) | |
bw = set(b.lower().split()) | |
if not aw or not bw: | |
return 0.0 | |
return len(aw & bw) / len(aw | bw) | |
def _looks_azerbaijani(s: str) -> bool: | |
has_az = any(ch in AZ_CHARS for ch in s) | |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s)) | |
return has_az or non_ascii_ratio > 0.15 | |
def _non_ascii_ratio(s: str) -> float: | |
return sum(ord(c) > 127 for c in s) / max(1, len(s)) | |
def _keyword_summary_en(contexts: List[str]) -> List[str]: | |
text = " ".join(contexts).lower() | |
bullets: List[str] = [] | |
def add(b: str): | |
if b not in bullets: | |
bullets.append(b) | |
if ("şüşə" in text) or ("ara kəsm" in text) or ("s/q" in text): | |
add("Removal and re-installation of glass partitions in sanitary areas.") | |
if "divar kağız" in text: | |
add("Wallpaper repair or replacement; some areas replaced with plaster and paint.") | |
if ("alçı boya" in text) or ("boya işi" in text) or ("plaster" in text) or ("boya" in text): | |
add("Wall plastering and painting works.") | |
if "seramik" in text or "ceramic" in text: | |
add("Ceramic tiling works (including grouting).") | |
if ("dilatasyon" in text) or ("ar 153" in text) or ("ar153" in text): | |
add("Installation of AR 153–050 floor expansion joint profile with accessories and insulation.") | |
if "daş yunu" in text or "rock wool" in text: | |
add("Rock wool insulation installed where required.") | |
if ("sütunlarda" in text) or ("üzlüyün" in text) or ("cladding" in text): | |
add("Repair of wall cladding on columns.") | |
if ("m²" in text) or ("ədəd" in text) or ("azn" in text) or ("unit price" in text): | |
add("Bill of quantities style lines with unit prices and measures (m², pcs).") | |
if not bullets: | |
bullets = [ | |
"The document appears to be a bill of quantities or a structured list of works.", | |
"Scope likely includes demolition/reinstallation, finishing (plaster & paint), tiling, and profiles.", | |
] | |
return bullets[:5] | |
class SimpleRAG: | |
def __init__( | |
self, | |
index_path: Path = INDEX_DIR / "faiss.index", | |
meta_path: Path = INDEX_DIR / "meta.npy", | |
model_name: str = MODEL_NAME, | |
cache_dir: Path = CACHE_DIR, | |
): | |
self.index_path = Path(index_path) | |
self.meta_path = Path(meta_path) | |
self.model_name = model_name | |
self.cache_dir = Path(cache_dir) | |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir)) | |
self.embed_dim = self.model.get_sentence_embedding_dimension() | |
self._translator = None # lazy | |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim) | |
self.chunks: List[str] = [] | |
self.last_added: List[str] = [] | |
self._load() | |
def _load(self) -> None: | |
if self.meta_path.exists(): | |
try: | |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() | |
except Exception: | |
self.chunks = [] | |
if self.index_path.exists(): | |
try: | |
idx = faiss.read_index(str(self.index_path)) | |
if getattr(idx, "d", None) == self.embed_dim: | |
self.index = idx | |
except Exception: | |
pass | |
def _persist(self) -> None: | |
faiss.write_index(self.index, str(self.index_path)) | |
np.save(self.meta_path, np.array(self.chunks, dtype=object)) | |
def _pdf_to_texts(pdf_path: Path, step: int = 1400) -> List[str]: | |
# 1) pypdf | |
pages: List[str] = [] | |
try: | |
reader = PdfReader(str(pdf_path)) | |
for p in reader.pages: | |
t = p.extract_text() or "" | |
if t.strip(): | |
pages.append(t) | |
except Exception: | |
pages = [] | |
full = " ".join(pages).strip() | |
if not full: | |
# 2) pdfminer fallback | |
try: | |
from pdfminer.high_level import extract_text as pdfminer_extract_text | |
full = (pdfminer_extract_text(str(pdf_path)) or "").strip() | |
except Exception: | |
full = "" | |
if not full: | |
return [] | |
chunks: List[str] = [] | |
for i in range(0, len(full), step): | |
part = full[i : i + step].strip() | |
if part: | |
chunks.append(part) | |
return chunks | |
def add_pdf(self, pdf_path: Path) -> int: | |
texts = self._pdf_to_texts(pdf_path) | |
if not texts: | |
# IMPORTANT: do NOT clobber last_added if this PDF had no extractable text | |
return 0 | |
self.last_added = texts[:] # only set if we actually extracted text | |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False) | |
self.index.add(emb.astype(np.float32)) | |
self.chunks.extend(texts) | |
self._persist() | |
return len(texts) | |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: | |
if self.index is None or self.index.ntotal == 0: | |
return [] | |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
D, I = self.index.search(q, min(k, max(1, self.index.ntotal))) | |
out: List[Tuple[str, float]] = [] | |
if I.size > 0 and self.chunks: | |
for idx, score in zip(I[0], D[0]): | |
if 0 <= idx < len(self.chunks): | |
out.append((self.chunks[idx], float(score))) | |
return out | |
def _translate_to_en(self, texts: List[str]) -> List[str]: | |
if not texts: | |
return texts | |
try: | |
from transformers import pipeline | |
if self._translator is None: | |
self._translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-az-en", | |
cache_dir=str(self.cache_dir), | |
device=-1, | |
) | |
outs = self._translator(texts, max_length=800) | |
return [o["translation_text"].strip() for o in outs] | |
except Exception: | |
return texts | |
def _prepare_contexts(self, question: str, contexts: List[str]) -> List[str]: | |
# Generic question or empty search → use last uploaded file snippets | |
generic = (len((question or "").split()) <= 5) or bool(GENERIC_Q_RE.search(question or "")) | |
if (not contexts or generic) and self.last_added: | |
return self.last_added[:5] | |
return contexts | |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str: | |
contexts = self._prepare_contexts(question, contexts) | |
if not contexts: | |
return "No relevant context found. Please upload a PDF or ask a more specific question." | |
# 1) Clean & keep top contexts | |
cleaned_contexts = [_clean_for_summary(c) for c in contexts[:5]] | |
cleaned_contexts = [c for c in cleaned_contexts if len(c) > 40] | |
if not cleaned_contexts: | |
bullets = _keyword_summary_en(contexts[:5]) | |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets) | |
# 2) Pre-translate paragraphs to EN when target is EN | |
translated = self._translate_to_en(cleaned_contexts) if OUTPUT_LANG == "en" else cleaned_contexts | |
# 3) Split into candidate sentences and filter | |
candidates: List[str] = [] | |
for para in translated: | |
for s in _split_sentences(para): | |
w = s.split() | |
if not (6 <= len(w) <= 60): | |
continue | |
# full sentence requirement: punctuation at end OR sufficiently long | |
if not re.search(r"[.!?](?:[\"'])?$", s) and len(w) < 18: | |
continue | |
if _tabular_like(s) or _mostly_numeric(s): | |
continue | |
candidates.append(" ".join(w)) | |
# 4) Fallback if no sentences | |
if not candidates: | |
bullets = _keyword_summary_en(cleaned_contexts) | |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets) | |
# 5) Rank by similarity to the question | |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
scores = (cand_emb @ q_emb.T).ravel() | |
order = np.argsort(-scores) | |
# 6) Aggressive near-duplicate removal | |
selected: List[str] = [] | |
for i in order: | |
s = candidates[i].strip() | |
if any(_sim_jaccard(s, t) >= 0.90 for t in selected): | |
continue | |
selected.append(s) | |
if len(selected) >= max_sentences: | |
break | |
# 7) If still looks non-English, use keyword fallback | |
if not selected or (sum(_non_ascii_ratio(s) for s in selected) / len(selected) > 0.10): | |
bullets = _keyword_summary_en(cleaned_contexts) | |
return "Answer (based on document context):\n" + "\n".join(f"- {b}" for b in bullets) | |
bullets = "\n".join(f"- {s}" for s in selected) | |
return f"Answer (based on document context):\n{bullets}" | |
def synthesize_answer(question: str, contexts: List[str]) -> str: | |
return SimpleRAG().synthesize_answer(question, contexts) | |
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"] | |