Spaces:
Running
Running
Commit
·
40a908e
1
Parent(s):
88d2e91
Robust RAG: pdfminer fallback, safe last_added, 400 on scanned PDFs, stats & reset endpoints
Browse files- app/api.py +43 -16
- app/rag_system.py +11 -9
app/api.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
# app/api.py
|
2 |
-
from typing import List
|
3 |
|
4 |
-
|
|
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from fastapi.responses import JSONResponse, RedirectResponse
|
7 |
from pydantic import BaseModel
|
8 |
|
9 |
-
from .rag_system import SimpleRAG, UPLOAD_DIR
|
10 |
|
11 |
-
app = FastAPI(title="RAG API", version="1.
|
12 |
|
13 |
app.add_middleware(
|
14 |
CORSMiddleware,
|
@@ -20,7 +21,7 @@ app.add_middleware(
|
|
20 |
|
21 |
rag = SimpleRAG()
|
22 |
|
23 |
-
# ----------
|
24 |
class UploadResponse(BaseModel):
|
25 |
filename: str
|
26 |
chunks_added: int
|
@@ -36,7 +37,15 @@ class AskResponse(BaseModel):
|
|
36 |
class HistoryResponse(BaseModel):
|
37 |
total_chunks: int
|
38 |
|
39 |
-
# ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
@app.get("/debug/translate")
|
41 |
def debug_translate():
|
42 |
try:
|
@@ -48,14 +57,6 @@ def debug_translate():
|
|
48 |
return JSONResponse(status_code=500, content={"ok": False, "error": str(e)})
|
49 |
|
50 |
# ---------- Core ----------
|
51 |
-
@app.get("/")
|
52 |
-
def root():
|
53 |
-
return RedirectResponse(url="/docs")
|
54 |
-
|
55 |
-
@app.get("/health")
|
56 |
-
def health():
|
57 |
-
return {"status": "ok", "version": app.version, "summarizer": "extractive_en+translate+fallback"}
|
58 |
-
|
59 |
@app.post("/upload_pdf", response_model=UploadResponse)
|
60 |
async def upload_pdf(file: UploadFile = File(...)):
|
61 |
dest = UPLOAD_DIR / file.filename
|
@@ -66,17 +67,43 @@ async def upload_pdf(file: UploadFile = File(...)):
|
|
66 |
break
|
67 |
f.write(chunk)
|
68 |
added = rag.add_pdf(dest)
|
|
|
|
|
|
|
69 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
70 |
|
71 |
-
# app/api.py içində ask_question endpoint
|
72 |
@app.post("/ask_question", response_model=AskResponse)
|
73 |
def ask_question(payload: AskRequest):
|
74 |
hits = rag.search(payload.question, k=max(1, payload.top_k))
|
75 |
contexts = [c for c, _ in hits]
|
76 |
-
# fallback: (optional) burda da son faylı ötürmək olar; synthesize_answer onsuz da edir:
|
77 |
answer = rag.synthesize_answer(payload.question, contexts)
|
78 |
return AskResponse(answer=answer, contexts=contexts or rag.last_added[:5])
|
79 |
|
80 |
@app.get("/get_history", response_model=HistoryResponse)
|
81 |
def get_history():
|
82 |
return HistoryResponse(total_chunks=len(rag.chunks))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app/api.py
|
2 |
+
from typing import List
|
3 |
|
4 |
+
import faiss, os
|
5 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
6 |
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from fastapi.responses import JSONResponse, RedirectResponse
|
8 |
from pydantic import BaseModel
|
9 |
|
10 |
+
from .rag_system import SimpleRAG, UPLOAD_DIR, INDEX_DIR
|
11 |
|
12 |
+
app = FastAPI(title="RAG API", version="1.3.0")
|
13 |
|
14 |
app.add_middleware(
|
15 |
CORSMiddleware,
|
|
|
21 |
|
22 |
rag = SimpleRAG()
|
23 |
|
24 |
+
# ---------- Schemas ----------
|
25 |
class UploadResponse(BaseModel):
|
26 |
filename: str
|
27 |
chunks_added: int
|
|
|
37 |
class HistoryResponse(BaseModel):
|
38 |
total_chunks: int
|
39 |
|
40 |
+
# ---------- Utility ----------
|
41 |
+
@app.get("/")
|
42 |
+
def root():
|
43 |
+
return RedirectResponse(url="/docs")
|
44 |
+
|
45 |
+
@app.get("/health")
|
46 |
+
def health():
|
47 |
+
return {"status": "ok", "version": app.version, "summarizer": "extractive_en + translate + fallback"}
|
48 |
+
|
49 |
@app.get("/debug/translate")
|
50 |
def debug_translate():
|
51 |
try:
|
|
|
57 |
return JSONResponse(status_code=500, content={"ok": False, "error": str(e)})
|
58 |
|
59 |
# ---------- Core ----------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
@app.post("/upload_pdf", response_model=UploadResponse)
|
61 |
async def upload_pdf(file: UploadFile = File(...)):
|
62 |
dest = UPLOAD_DIR / file.filename
|
|
|
67 |
break
|
68 |
f.write(chunk)
|
69 |
added = rag.add_pdf(dest)
|
70 |
+
if added == 0:
|
71 |
+
# Clear message for scanned/empty PDFs
|
72 |
+
raise HTTPException(status_code=400, detail="No extractable text found (likely a scanned image PDF).")
|
73 |
return UploadResponse(filename=file.filename, chunks_added=added)
|
74 |
|
|
|
75 |
@app.post("/ask_question", response_model=AskResponse)
|
76 |
def ask_question(payload: AskRequest):
|
77 |
hits = rag.search(payload.question, k=max(1, payload.top_k))
|
78 |
contexts = [c for c, _ in hits]
|
|
|
79 |
answer = rag.synthesize_answer(payload.question, contexts)
|
80 |
return AskResponse(answer=answer, contexts=contexts or rag.last_added[:5])
|
81 |
|
82 |
@app.get("/get_history", response_model=HistoryResponse)
|
83 |
def get_history():
|
84 |
return HistoryResponse(total_chunks=len(rag.chunks))
|
85 |
+
|
86 |
+
@app.get("/stats")
|
87 |
+
def stats():
|
88 |
+
return {
|
89 |
+
"total_chunks": len(rag.chunks),
|
90 |
+
"faiss_ntotal": int(getattr(rag.index, "ntotal", 0)),
|
91 |
+
"model_dim": int(getattr(rag.index, "d", rag.embed_dim)),
|
92 |
+
"last_added_chunks": len(rag.last_added),
|
93 |
+
"version": app.version,
|
94 |
+
}
|
95 |
+
|
96 |
+
@app.post("/reset_index")
|
97 |
+
def reset_index():
|
98 |
+
try:
|
99 |
+
rag.index = faiss.IndexFlatIP(rag.embed_dim)
|
100 |
+
rag.chunks = []
|
101 |
+
rag.last_added = []
|
102 |
+
for p in [INDEX_DIR / "faiss.index", INDEX_DIR / "meta.npy"]:
|
103 |
+
try:
|
104 |
+
os.remove(p)
|
105 |
+
except FileNotFoundError:
|
106 |
+
pass
|
107 |
+
return {"ok": True}
|
108 |
+
except Exception as e:
|
109 |
+
raise HTTPException(status_code=500, detail=str(e)}
|
app/rag_system.py
CHANGED
@@ -32,7 +32,7 @@ def _split_sentences(text: str) -> List[str]:
|
|
32 |
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()]
|
33 |
|
34 |
def _mostly_numeric(s: str) -> bool:
|
35 |
-
alnum = [c for c in s if c.isalnum()]
|
36 |
if not alnum:
|
37 |
return True
|
38 |
digits = sum(c.isdigit() for c in alnum)
|
@@ -40,7 +40,7 @@ def _mostly_numeric(s: str) -> bool:
|
|
40 |
|
41 |
def _tabular_like(s: str) -> bool:
|
42 |
hits = len(NUM_TOK_RE.findall(s))
|
43 |
-
return hits >= 4 or len(s) < 15
|
44 |
|
45 |
def _clean_for_summary(text: str) -> str:
|
46 |
out = []
|
@@ -69,6 +69,7 @@ def _non_ascii_ratio(s: str) -> float:
|
|
69 |
def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
70 |
text = " ".join(contexts).lower()
|
71 |
bullets: List[str] = []
|
|
|
72 |
def add(b: str):
|
73 |
if b not in bullets:
|
74 |
bullets.append(b)
|
@@ -116,7 +117,7 @@ class SimpleRAG:
|
|
116 |
self._translator = None # lazy
|
117 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
118 |
self.chunks: List[str] = []
|
119 |
-
self.last_added: List[str] = []
|
120 |
self._load()
|
121 |
|
122 |
def _load(self) -> None:
|
@@ -171,9 +172,11 @@ class SimpleRAG:
|
|
171 |
|
172 |
def add_pdf(self, pdf_path: Path) -> int:
|
173 |
texts = self._pdf_to_texts(pdf_path)
|
174 |
-
self.last_added = texts[:] # son faylı yadda saxla (summarize fallback üçün)
|
175 |
if not texts:
|
|
|
176 |
return 0
|
|
|
|
|
177 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
178 |
self.index.add(emb.astype(np.float32))
|
179 |
self.chunks.extend(texts)
|
@@ -210,11 +213,10 @@ class SimpleRAG:
|
|
210 |
return texts
|
211 |
|
212 |
def _prepare_contexts(self, question: str, contexts: List[str]) -> List[str]:
|
213 |
-
#
|
214 |
-
generic = (len(question.split()) <= 5) or bool(GENERIC_Q_RE.search(question or ""))
|
215 |
if (not contexts or generic) and self.last_added:
|
216 |
-
|
217 |
-
return base
|
218 |
return contexts
|
219 |
|
220 |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
|
@@ -240,7 +242,7 @@ class SimpleRAG:
|
|
240 |
w = s.split()
|
241 |
if not (6 <= len(w) <= 60):
|
242 |
continue
|
243 |
-
#
|
244 |
if not re.search(r"[.!?](?:[\"'])?$", s) and len(w) < 18:
|
245 |
continue
|
246 |
if _tabular_like(s) or _mostly_numeric(s):
|
|
|
32 |
return [s.strip() for s in re.split(r'(?<=[.!?])\s+|[\r\n]+', text) if s.strip()]
|
33 |
|
34 |
def _mostly_numeric(s: str) -> bool:
|
35 |
+
alnum = [c for c in s if s and c.isalnum()]
|
36 |
if not alnum:
|
37 |
return True
|
38 |
digits = sum(c.isdigit() for c in alnum)
|
|
|
40 |
|
41 |
def _tabular_like(s: str) -> bool:
|
42 |
hits = len(NUM_TOK_RE.findall(s))
|
43 |
+
return hits >= 4 or len(s) < 15
|
44 |
|
45 |
def _clean_for_summary(text: str) -> str:
|
46 |
out = []
|
|
|
69 |
def _keyword_summary_en(contexts: List[str]) -> List[str]:
|
70 |
text = " ".join(contexts).lower()
|
71 |
bullets: List[str] = []
|
72 |
+
|
73 |
def add(b: str):
|
74 |
if b not in bullets:
|
75 |
bullets.append(b)
|
|
|
117 |
self._translator = None # lazy
|
118 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
119 |
self.chunks: List[str] = []
|
120 |
+
self.last_added: List[str] = []
|
121 |
self._load()
|
122 |
|
123 |
def _load(self) -> None:
|
|
|
172 |
|
173 |
def add_pdf(self, pdf_path: Path) -> int:
|
174 |
texts = self._pdf_to_texts(pdf_path)
|
|
|
175 |
if not texts:
|
176 |
+
# IMPORTANT: do NOT clobber last_added if this PDF had no extractable text
|
177 |
return 0
|
178 |
+
|
179 |
+
self.last_added = texts[:] # only set if we actually extracted text
|
180 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
181 |
self.index.add(emb.astype(np.float32))
|
182 |
self.chunks.extend(texts)
|
|
|
213 |
return texts
|
214 |
|
215 |
def _prepare_contexts(self, question: str, contexts: List[str]) -> List[str]:
|
216 |
+
# Generic question or empty search → use last uploaded file snippets
|
217 |
+
generic = (len((question or "").split()) <= 5) or bool(GENERIC_Q_RE.search(question or ""))
|
218 |
if (not contexts or generic) and self.last_added:
|
219 |
+
return self.last_added[:5]
|
|
|
220 |
return contexts
|
221 |
|
222 |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str:
|
|
|
242 |
w = s.split()
|
243 |
if not (6 <= len(w) <= 60):
|
244 |
continue
|
245 |
+
# full sentence requirement: punctuation at end OR sufficiently long
|
246 |
if not re.search(r"[.!?](?:[\"'])?$", s) and len(w) < 18:
|
247 |
continue
|
248 |
if _tabular_like(s) or _mostly_numeric(s):
|