Spaces:
Sleeping
Sleeping
# app/rag_system.py | |
from __future__ import annotations | |
import os, re | |
from pathlib import Path | |
from typing import List, Tuple | |
import faiss | |
import numpy as np | |
from pypdf import PdfReader | |
from sentence_transformers import SentenceTransformer | |
ROOT_DIR = Path(__file__).resolve().parent.parent | |
DATA_DIR = ROOT_DIR / "data" | |
UPLOAD_DIR = DATA_DIR / "uploads" | |
INDEX_DIR = DATA_DIR / "index" | |
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) | |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR): | |
d.mkdir(parents=True, exist_ok=True) | |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower() | |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ") | |
NUM_TOK_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE) | |
def _split_sentences(text: str) -> List[str]: | |
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()] | |
def _mostly_numeric(s: str) -> bool: | |
alnum = [c for c in s if c.isalnum()] | |
if not alnum: | |
return True | |
digits = sum(c.isdigit() for c in alnum) | |
return digits / max(1, len(alnum)) > 0.3 | |
def _tabular_like(s: str) -> bool: | |
hits = len(NUM_TOK_RE.findall(s)) | |
return hits >= 2 or "Page" in s or len(s) < 20 | |
def _clean_for_summary(text: str) -> str: | |
out = [] | |
for ln in text.splitlines(): | |
t = " ".join(ln.split()) | |
if not t or _mostly_numeric(t) or _tabular_like(t): | |
continue | |
out.append(t) | |
return " ".join(out) | |
def _norm_fingerprint(s: str) -> str: | |
s = s.lower() | |
s = "".join(ch for ch in s if ch.isalpha() or ch.isspace()) | |
return " ".join(s.split()) | |
def _sim_jaccard(a: str, b: str) -> float: | |
aw = set(a.lower().split()) | |
bw = set(b.lower().split()) | |
if not aw or not bw: | |
return 0.0 | |
return len(aw & bw) / len(aw | bw) | |
def _looks_azerbaijani(s: str) -> bool: | |
has_az = any(ch in AZ_CHARS for ch in s) | |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s)) | |
return has_az or non_ascii_ratio > 0.15 | |
class SimpleRAG: | |
def __init__( | |
self, | |
index_path: Path = INDEX_DIR / "faiss.index", | |
meta_path: Path = INDEX_DIR / "meta.npy", | |
model_name: str = MODEL_NAME, | |
cache_dir: Path = CACHE_DIR, | |
): | |
self.index_path = Path(index_path) | |
self.meta_path = Path(meta_path) | |
self.model_name = model_name | |
self.cache_dir = Path(cache_dir) | |
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir)) | |
self.embed_dim = self.model.get_sentence_embedding_dimension() | |
self._translator = None # lazy | |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim) | |
self.chunks: List[str] = [] | |
self._load() | |
def _load(self) -> None: | |
if self.meta_path.exists(): | |
try: | |
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist() | |
except Exception: | |
self.chunks = [] | |
if self.index_path.exists(): | |
try: | |
idx = faiss.read_index(str(self.index_path)) | |
if getattr(idx, "d", None) == self.embed_dim: | |
self.index = idx | |
except Exception: | |
pass | |
def _persist(self) -> None: | |
faiss.write_index(self.index, str(self.index_path)) | |
np.save(self.meta_path, np.array(self.chunks, dtype=object)) | |
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]: | |
reader = PdfReader(str(pdf_path)) | |
pages: List[str] = [] | |
for p in reader.pages: | |
t = p.extract_text() or "" | |
if t.strip(): | |
pages.append(t) | |
chunks: List[str] = [] | |
for txt in pages: | |
for i in range(0, len(txt), step): | |
part = txt[i : i + step].strip() | |
if part: | |
chunks.append(part) | |
return chunks | |
def add_pdf(self, pdf_path: Path) -> int: | |
texts = self._pdf_to_texts(pdf_path) | |
if not texts: | |
return 0 | |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False) | |
self.index.add(emb.astype(np.float32)) | |
self.chunks.extend(texts) | |
self._persist() | |
return len(texts) | |
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]: | |
if self.index is None or self.index.ntotal == 0: | |
return [] | |
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
D, I = self.index.search(q, min(k, max(1, self.index.ntotal))) | |
out: List[Tuple[str, float]] = [] | |
if I.size > 0 and self.chunks: | |
for idx, score in zip(I[0], D[0]): | |
if 0 <= idx < len(self.chunks): | |
out.append((self.chunks[idx], float(score))) | |
return out | |
def _translate_to_en(self, texts: List[str]) -> List[str]: | |
if not texts: | |
return texts | |
try: | |
from transformers import pipeline | |
if self._translator is None: | |
self._translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-az-en", | |
cache_dir=str(self.cache_dir), | |
device=-1, | |
) | |
outs = self._translator(texts, max_length=800) | |
return [o["translation_text"].strip() for o in outs] | |
except Exception: | |
return texts | |
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 4) -> str: | |
if not contexts: | |
return "No relevant context found. Please upload a PDF or ask a more specific question." | |
# 1) Clean top contexts | |
cleaned_contexts = [_clean_for_summary(c) for c in contexts[:5]] | |
cleaned_contexts = [c for c in cleaned_contexts if len(c) > 40] | |
if not cleaned_contexts: | |
return "The document appears largely tabular/numeric; couldn't extract readable sentences." | |
# 2) Pre-translate paragraphs to EN (if target is EN) | |
if OUTPUT_LANG == "en": | |
try: | |
cleaned_contexts = self._translate_to_en(cleaned_contexts) | |
except Exception: | |
pass | |
# 3) Split into sentence candidates & filter | |
candidates: List[str] = [] | |
for para in cleaned_contexts: | |
for s in _split_sentences(para): | |
w = s.split() | |
if not (8 <= len(w) <= 35): | |
continue | |
if _tabular_like(s) or _mostly_numeric(s): | |
continue | |
candidates.append(" ".join(w)) | |
if not candidates: | |
return "The document appears largely tabular/numeric; couldn't extract readable sentences." | |
# 4) Rank by similarity to question | |
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32) | |
scores = (cand_emb @ q_emb.T).ravel() | |
order = np.argsort(-scores) | |
# 5) Aggressive near-duplicate removal (Jaccard >= 0.90) | |
selected: List[str] = [] | |
for i in order: | |
s = candidates[i].strip() | |
if any(_sim_jaccard(s, t) >= 0.90 for t in selected): | |
continue | |
selected.append(s) | |
if len(selected) >= max_sentences: | |
break | |
if not selected: | |
return "The document appears largely tabular/numeric; couldn't extract readable sentences." | |
bullets = "\n".join(f"- {s}" for s in selected) | |
return f"Answer (based on document context):\n{bullets}" | |
def synthesize_answer(question: str, contexts: List[str]) -> str: | |
return SimpleRAG().synthesize_answer(question, contexts) | |
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"] | |