FastAPI-RAG-API / app /rag_system.py
HamidOmarov's picture
English UX + extractive summarizer
ebbe4db
raw
history blame
6.46 kB
# app/rag_system.py
from __future__ import annotations
import os, re
from pathlib import Path
from typing import List, Tuple
import faiss
import numpy as np
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
# Paths & caches
ROOT_DIR = Path(__file__).resolve().parent.parent
DATA_DIR = ROOT_DIR / "data"
UPLOAD_DIR = DATA_DIR / "uploads"
INDEX_DIR = DATA_DIR / "index"
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
d.mkdir(parents=True, exist_ok=True)
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
def _split_sentences(text: str) -> List[str]:
# Split by sentence end or newlines
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
def _mostly_numeric(s: str) -> bool:
alnum = [c for c in s if c.isalnum()]
if not alnum:
return True
digits = sum(c.isdigit() for c in alnum)
return digits / len(alnum) > 0.5
def _clean_for_summary(text: str) -> str:
# Drop lines that are mostly numbers / too short
lines = []
for ln in text.splitlines():
t = " ".join(ln.split())
if len(t) < 10:
continue
if _mostly_numeric(t):
continue
lines.append(t)
return " ".join(lines)
class SimpleRAG:
"""
- PDF -> text chunking
- Sentence-Transformers embeddings (cosine/IP)
- FAISS index
- Extractive answer in EN
"""
def __init__(
self,
index_path: Path = INDEX_DIR / "faiss.index",
meta_path: Path = INDEX_DIR / "meta.npy",
model_name: str = MODEL_NAME,
cache_dir: Path = CACHE_DIR,
):
self.index_path = Path(index_path)
self.meta_path = Path(meta_path)
self.model_name = model_name
self.cache_dir = Path(cache_dir)
self.model = SentenceTransformer(self.model_name, cache_folder=str(self.cache_dir))
self.embed_dim = self.model.get_sentence_embedding_dimension()
self.index: faiss.Index = None # type: ignore
self.chunks: List[str] = []
self._load()
def _load(self) -> None:
if self.meta_path.exists():
try:
self.chunks = np.load(self.meta_path, allow_pickle=True).tolist()
except Exception:
self.chunks = []
if self.index_path.exists():
try:
idx = faiss.read_index(str(self.index_path))
self.index = idx if getattr(idx, "d", None) == self.embed_dim else faiss.IndexFlatIP(self.embed_dim)
except Exception:
self.index = faiss.IndexFlatIP(self.embed_dim)
else:
self.index = faiss.IndexFlatIP(self.embed_dim)
def _persist(self) -> None:
faiss.write_index(self.index, str(self.index_path))
np.save(self.meta_path, np.array(self.chunks, dtype=object))
@staticmethod
def _pdf_to_texts(pdf_path: Path, step: int = 800) -> List[str]:
reader = PdfReader(str(pdf_path))
pages = []
for p in reader.pages:
t = p.extract_text() or ""
if t.strip():
pages.append(t)
chunks: List[str] = []
for txt in pages:
for i in range(0, len(txt), step):
part = txt[i:i+step].strip()
if part:
chunks.append(part)
return chunks
def add_pdf(self, pdf_path: Path) -> int:
texts = self._pdf_to_texts(pdf_path)
if not texts:
return 0
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
self.index.add(emb.astype(np.float32))
self.chunks.extend(texts)
self._persist()
return len(texts)
def search(self, query: str, k: int = 5) -> List[Tuple[str, float]]:
if self.index is None or self.index.ntotal == 0:
return []
q = self.model.encode([query], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
D, I = self.index.search(q, min(k, max(1, self.index.ntotal)))
out: List[Tuple[str, float]] = []
if I.size > 0 and self.chunks:
for idx, score in zip(I[0], D[0]):
if 0 <= idx < len(self.chunks):
out.append((self.chunks[idx], float(score)))
return out
# -------- Improved English answer --------
def synthesize_answer(self, question: str, contexts: List[str], max_sentences: int = 5) -> str:
if not contexts:
return "No relevant context found. Please upload a PDF or ask a more specific question."
# Prepare candidate sentences
candidates: List[str] = []
for c in contexts[:5]:
cleaned = _clean_for_summary(c)
for s in _split_sentences(cleaned):
if 20 <= len(s) <= 240 and not _mostly_numeric(s):
candidates.append(s)
# Fallback if still nothing
if not candidates:
return "The document appears to be mostly tabular/numeric; no clear sentences to summarize."
# Rank candidates by cosine similarity to the question
q_emb = self.model.encode([question], convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
cand_emb = self.model.encode(candidates, convert_to_numpy=True, normalize_embeddings=True).astype(np.float32)
scores = (cand_emb @ q_emb.T).ravel()
order = np.argsort(-scores)
# Pick top sentences with simple de-dup
selected: List[str] = []
seen = set()
for i in order:
s = candidates[i].strip()
key = s.lower()
if key in seen:
continue
seen.add(key)
selected.append(s)
if len(selected) >= max_sentences:
break
bullet = "\n".join(f"- {s}" for s in selected)
note = " (The PDF seems largely tabular; extracted the most relevant lines.)" if all(_mostly_numeric(c) for c in contexts) else ""
return f"Answer (based on document context):\n{bullet}{note}"
# Module-level alias
def synthesize_answer(question: str, contexts: List[str]) -> str:
return SimpleRAG().synthesize_answer(question, contexts)
__all__ = ["SimpleRAG", "synthesize_answer", "DATA_DIR", "UPLOAD_DIR", "INDEX_DIR", "CACHE_DIR", "MODEL_NAME"]