File size: 11,981 Bytes
fc341bd
80e3b5e
fc341bd
 
 
 
 
4d28021
80e3b5e
fc341bd
 
 
 
80e3b5e
 
 
 
 
2c9e49b
 
 
fc341bd
 
 
 
80e3b5e
b499e0b
 
80e3b5e
b499e0b
 
80e3b5e
 
 
 
fc341bd
 
6170174
fc341bd
 
 
 
 
 
 
 
 
6170174
f52e3df
fc341bd
f52e3df
fc341bd
6170174
 
 
 
 
 
 
 
 
 
fc341bd
 
 
f52e3df
fc341bd
f52e3df
fc341bd
6170174
 
 
 
 
 
 
 
 
fc341bd
 
f52e3df
fc341bd
 
 
 
 
 
 
 
 
6170174
 
 
 
 
 
 
 
 
 
fc341bd
 
 
 
 
f52e3df
 
 
6170174
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
 
 
6170174
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
6170174
 
 
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
 
 
 
 
 
 
 
6170174
 
 
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
 
 
6170174
 
 
 
 
 
 
 
 
 
 
 
f52e3df
 
 
 
 
 
80e3b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6170174
80e3b5e
 
 
 
6170174
 
80e3b5e
 
 
 
2c9e49b
 
 
 
 
 
 
 
 
 
80e3b5e
 
2c9e49b
80e3b5e
 
 
 
2c9e49b
80e3b5e
2c9e49b
 
 
 
80e3b5e
2c9e49b
 
 
 
 
 
 
80e3b5e
2c9e49b
 
 
 
 
 
 
 
 
 
 
 
 
80e3b5e
2c9e49b
80e3b5e
6170174
caf960b
 
80e3b5e
 
caf960b
80e3b5e
 
6170174
2c9e49b
 
 
fc341bd
caf960b
fc341bd
caf960b
fc341bd
caf960b
 
6170174
caf960b
 
6170174
caf960b
fc341bd
80e3b5e
caf960b
fc341bd
caf960b
80e3b5e
caf960b
fc341bd
 
f52e3df
fc341bd
caf960b
 
fc341bd
caf960b
fc341bd
 
f52e3df
80e3b5e
f52e3df
80e3b5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import shutil
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import  SystemMessage, HumanMessage
from langchain.tools import tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from dotenv import load_dotenv
from langchain.vectorstores import Chroma
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.tools.retriever import create_retriever_tool
from typing import TypedDict, Annotated, List
from langchain_community.tools import DuckDuckGoSearchRun, WikipediaQueryRun, ArxivQueryRun
from langchain_community.utilities import WikipediaAPIWrapper, ArxivAPIWrapper
from langchain.tools import Tool

# Load environment variables from .env
load_dotenv()

# Custom Agent Prompt Template
Agent_prompt_template = '''You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.  '''

sys_msg = SystemMessage(content=Agent_prompt_template)


# Initialize LLM
def initialize_llm():
    """Initializes the ChatGroq LLM."""
    llm = ChatGroq(
        temperature=0,
        model_name="qwen-qwq-32b",
        groq_api_key=os.getenv("GROQ_API_KEY")
    )
    return llm

# Initialize Tavily Search Tool
def initialize_search_tool():
    """Initializes the TavilySearchResults tool."""
    return TavilySearchResults()

# Weather tool
def get_weather(location: str, search_tool: TavilySearchResults = None) -> str:
    """
    Fetches the current weather information for a given location using Tavily search.

    Args:
        location (str): The name of the location to search for.
        search_tool (TavilySearchResults, optional):  Defaults to None.

    Returns:
        str: The weather information for the specified location.
    """
    if search_tool is None:
        search_tool = initialize_search_tool()
    query = f"current weather in {location}"
    return search_tool.run(query)

# Recommendation chain
def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
    """
    Initializes the recommendation chain.

    Args:
      llm(ChatGroq):The LLM to use

    Returns:
        Runnable: A runnable sequence to generate recommendations.
    """
    recommendation_prompt = ChatPromptTemplate.from_template("""
    You are a helpful assistant that gives weather-based advice.
    
    Given the current weather condition: "{weather_condition}", provide:
    1. Clothing or activity recommendations suited for this weather.
    2. At least one health tip to stay safe or comfortable in this condition.

    Be concise and clear.
    """)
    return recommendation_prompt | llm

def get_recommendation(weather_condition: str, recommendation_chain: Runnable = None) -> str:
    """
    Gives activity/clothing recommendations and health tips based on the weather condition.

    Args:
        weather_condition (str): The current weather condition.
        recommendation_chain (Runnable, optional): The recommendation chain to use. Defaults to None.

    Returns:
        str:  Recommendations and health tips for the given weather condition.
    """
    if recommendation_chain is None:
        llm = initialize_llm()
        recommendation_chain = initialize_recommendation_chain(llm)
    return recommendation_chain.invoke({"weather_condition": weather_condition})

# Math tools
@tool
def add(x: int, y: int) -> int:
    """
    Adds two integers.

    Args:
        x (int): The first integer.
        y (int): The second integer.

    Returns:
        int: The sum of x and y.
    """
    return x + y

@tool
def subtract(x: int, y: int) -> int:
    """
    Subtracts two integers.

    Args:
        x (int): The first integer.
        y (int): The second integer.

    Returns:
        int: The difference between x and y.
    """
    return x - y

@tool
def multiply(x: int, y: int) -> int:
    """
    Multiplies two integers.

    Args:
        x (int): The first integer.
        y (int): The second integer.

    Returns:
        int: The product of x and y.
    """
    return x * y

@tool
def divide(x: int, y: int) -> float:
    """
    Divides two numbers.

    Args:
        x (int): The numerator.
        y (int): The denominator.

    Returns:
        float: The result of the division.

    Raises:
        ValueError: If y is zero.
    """
    if y == 0:
        raise ValueError("Cannot divide by zero.")
    return x / y

@tool
def square(x: int) -> int:
    """
    Calculates the square of a number.

    Args:
        x (int): The number to square.

    Returns:
        int: The square of x.
    """
    return x * x

@tool
def cube(x: int) -> int:
    """
    Calculates the cube of a number.

    Args:
        x (int): The number to cube.

    Returns:
        int: The cube of x.
    """
    return x * x * x

@tool
def power(x: int, y: int) -> int:
    """
    Raises a number to the power of another number.

    Args:
        x (int): The base number.
        y (int): The exponent.

    Returns:
        int: x raised to the power of y.
    """
    return x ** y

@tool
def factorial(n: int) -> int:
    """
    Calculates the factorial of a non-negative integer.

    Args:
        n (int): The non-negative integer.

    Returns:
        int: The factorial of n.

    Raises:
        ValueError: If n is negative.
    """
    if n < 0:
        raise ValueError("Factorial is not defined for negative numbers.")
    if n == 0 or n == 1:
        return 1
    result = 1
    for i in range(2, n + 1):
        result *= i
    return result

@tool
def mean(numbers: list) -> float:
    """
    Calculates the mean of a list of numbers.

    Args:
        numbers (list): A list of numbers.

    Returns:
        float: The mean of the numbers.

    Raises:
        ValueError: If the list is empty.
    """
    if not numbers:
        raise ValueError("The list is empty.")
    return sum(numbers) / len(numbers)

@tool
def standard_deviation(numbers: list) -> float:
    """
    Calculates the standard deviation of a list of numbers.

    Args:
        numbers (list): A list of numbers.

    Returns:
        float: The standard deviation of the numbers.

    Raises:
        ValueError: If the list is empty.
    """
    if not numbers:
        raise ValueError("The list is empty.")
    mean_value = mean(numbers)
    variance = sum((x - mean_value) ** 2 for x in numbers) / len(numbers)
    return variance ** 0.5

# --- Vector Store + Retriever ---
# State schema
class MessagesState(TypedDict):
    messages: Annotated[List[HumanMessage], "Messages in the conversation"]

# === VECTOR STORE SETUP ===
PERSIST_DIR = "./chroma_store"

def initialize_chroma_store():
    # Optional: clear existing store if desired
    if os.path.exists(PERSIST_DIR):
        shutil.rmtree(PERSIST_DIR)
        os.makedirs(PERSIST_DIR)

    # Initialize embeddings
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

    # Load existing or empty vector store
    vectorstore = Chroma(
        embedding_function=embeddings,
        persist_directory=PERSIST_DIR
    )
    return vectorstore

vector_store = initialize_chroma_store()

# Create retriever tool
retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store."
)



@tool
def weather_tool(location: str) -> str:
    """
    Fetches the weather for a location.

    Args:
        location (str): The location to fetch weather for.

    Returns:
        str: The weather information.
    """
    return get_weather(location, search_tool)


from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.tools.ddg_search import DuckDuckGoSearchRun
from langchain_community.tools.wikipedia.tool import WikipediaQueryRun
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain_community.tools.arxiv.tool import ArxivQueryRun
from langchain_community.utilities.arxiv import ArxivAPIWrapper
from langchain.tools import tool

# 1. Tavily Web Search Tool (already in correct format)
@tool
def web_search(query: str) -> str:
    """Search the web for a given query and return the summary."""
    search_tool = TavilySearchResults()
    result = search_tool.run(query)
    return result[0]['content']

# 2. DuckDuckGo Search Tool
@tool
def duckduckgo_search(query: str) -> str:
    """Search the web using DuckDuckGo for a given query and return the result."""
    search_tool = DuckDuckGoSearchRun(verbose=False)
    return search_tool.run(query)

# 3. Wikipedia Search Tool
@tool
def wikipedia_search(query: str) -> str:
    """Search Wikipedia for a given query and return the top 3 results."""
    wrapper = WikipediaAPIWrapper(top_k_results=3)
    wikipedia = WikipediaQueryRun(api_wrapper=wrapper, verbose=False)
    return wikipedia.run(query)

# 4. Arxiv Search Tool
@tool
def arxiv_search(query: str) -> str:
    """Search arXiv for academic papers based on a query and return the top 3 results."""
    wrapper = ArxivAPIWrapper(
        top_k_results=3,
        ARXIV_MAX_QUERY_LENGTH=300,
        load_max_docs=3,
        load_all_available_meta=False,
        doc_content_chars_max=40000
    )
    arxiv = ArxivQueryRun(api_wrapper=wrapper, verbose=False)
    return arxiv.run(query)

tools = [arxiv_search, duckduckgo_search, web_search,wikipedia_search,
            add, subtract, multiply, divide, square, cube, power, factorial, mean, standard_deviation]

# === LLM with Tools ===

llm = ChatGroq(
    temperature=0,
    model_name="qwen-qwq-32b",
    groq_api_key=os.getenv("GROQ_API_KEY")
)

# tools = [weather_tool, wiki_search, web_search,
#          add, subtract, multiply, divide, square, cube,
#          power, factorial, mean, standard_deviation, arxiv_tool,wikisearch_tool, search_tool ]

llm_with_tools = llm.bind_tools(tools)

# === LangGraph State ===

class ToolAgentState(TypedDict):
    messages: Annotated[List[HumanMessage], "Messages in the conversation"]

def assistant(state: ToolAgentState):
    return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}

# === Build Graph ===

def build_graph():
    builder = StateGraph(ToolAgentState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    builder.set_entry_point("assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")
    return builder.compile()

# === Run ===

if __name__ == "__main__":
    question = "When did India won a world cup in cricket before 2000?"
    graph = build_graph()
    messages = [HumanMessage(content=question)]
    result = graph.invoke({"messages": messages})

    for msg in result["messages"]:
        msg.pretty_print()